Clinical Evidence Supports a Protective Role for CXCL5 in Coronary Artery Disease

Am J Pathol. 2017 Dec;187(12):2895-2911. doi: 10.1016/j.ajpath.2017.08.006. Epub 2017 Nov 16.

Abstract

Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27-0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31-0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD.

MeSH terms

  • Aged
  • Chemokine CXCL5 / blood*
  • Chemokine CXCL5 / genetics
  • Coronary Artery Disease / blood*
  • Coronary Artery Disease / genetics
  • Female
  • Humans
  • Male

Substances

  • CXCL5 protein, human
  • Chemokine CXCL5