Combining diagnostic methods for antimicrobial susceptibility testing - A comparative approach

J Microbiol Methods. 2018 Jan;144:177-185. doi: 10.1016/j.mimet.2017.11.010. Epub 2017 Nov 14.

Abstract

Background: The minimum inhibitory concentration (MIC) is a measure of antimicrobial susceptibility testing (AST) of a given antibiotic but provides insufficient information when bacterial killing is crucial, e.g., when treating immunocompromised patients. In these cases, the minimum bactericidal concentration (MBC) is a more reliable measure of antibiotic activity. Here, we aim to demonstrate and recommend combinations of methods for MIC and MBC measurements. We also aim to emphasize the importance of uniform protocols for these procedures including the time point for reading MIC results, which the authors suggest to be 20h.

Methods: To address the challenges with obtaining fast and reliable readouts on MIC as well as the kinetic and end-point effects of antibiotics, the broth micro dilution method, a calorimetric method and a microscopy-based screening system (MBSS) were evaluated in this study. For MBC determination, fluorophore staining with SYTO9 and propidium iodide was compared to the broth regrowth method.

Results: Three scenarios for combining the MIC and MBC methods depending on the investigators' primary concern (time, cost or sensitivity) are presented. Further, as the MBSS and the isothermal microcalorimetry method detected delayed bacterial growth up to 18h after initiation of experiments, the importance of reading MIC testing after a full 20h is emphasized. A one-fold change in MIC values can be observed when comparing data obtained at 16h and 20h of incubation.

Conclusion: The authors suggest that combining MIC and MBC determinations will provide more detailed understanding of the bacteria susceptibility to antibiotic drugs and result in more clinically relevant data and optimized therapies. Furthermore, establishing 20h as a time point for reading MIC results will provide more uniform data across laboratories.

Keywords: Antimicrobial susceptibility test; Microbiology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacteria / drug effects*
  • Bacteria / growth & development
  • Bacteriological Techniques / methods
  • Costs and Cost Analysis
  • Humans
  • Microbial Sensitivity Tests / methods*
  • Sensitivity and Specificity
  • Time Factors

Substances

  • Anti-Bacterial Agents