Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe

J Cell Sci. 2018 Jan 4;131(1):jcs210740. doi: 10.1242/jcs.210740.


Kinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by kinesin-5, which generates outward force. This outward force is balanced by antagonistic inward force elicited by kinesin-14 and/or dynein. In fission yeast, two kinesin-14 proteins, Pkl1 and Klp2, play an opposing role against the kinesin-5 motor protein Cut7. However, how the two kinesin-14 proteins coordinate individual activities remains elusive. Here, we show that although deletion of either pkl1 or klp2 rescues temperature-sensitive cut7 mutants, deletion of only pkl1 can bypass the lethality caused by cut7 deletion. Pkl1 is tethered to the spindle pole body, whereas Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two kinesin-14 proteins. Interestingly, human kinesin-14 (KIFC1 or HSET) can replace either Pkl1 or Klp2. Moreover, overproduction of HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism whereby two different Kinesin-14 motor proteins exert their antagonistic roles against kinesin-5 in a spatially distinct manner.

Keywords: Fission yeast; Force generation; Kinesin; Mitotic bipolar spindle; Spindle pole body.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Segregation
  • Humans
  • Kinesins / genetics
  • Kinesins / metabolism*
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism*
  • Mitosis
  • Nuclear Proteins / metabolism
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / metabolism*
  • Schizosaccharomyces pombe Proteins / genetics
  • Schizosaccharomyces pombe Proteins / metabolism*
  • Spindle Pole Bodies / metabolism*


  • Cut7 protein, S pombe
  • KIFC1 protein, human
  • Klp2 protein, S pombe
  • Microtubule-Associated Proteins
  • Nuclear Proteins
  • PKL1 protein, S pombe
  • Schizosaccharomyces pombe Proteins
  • Kinesins