Water and Blood Repellent Flexible Tubes
- PMID: 29167540
- PMCID: PMC5700071
- DOI: 10.1038/s41598-017-16369-3
Water and Blood Repellent Flexible Tubes
Abstract
A top-down scalable method to produce flexible water and blood repellent tubes is introduced. The method is based on replication of overhanging nanostructures from an aluminum tube template to polydimethylsiloxane (PDMS) via atomic layer deposition (ALD) assisted sacrificial etching. The nanostructured PDMS/titania tubes are superhydrophobic with water contact angles 163 ± 1° (advancing) and 157 ± 1° (receding) without any further coating. Droplets are able to slide through a 4 mm (inner diameter) tube with low sliding angles of less than 10° for a 35 µL droplet. The superhydrophobic tube shows up to 5,000 times increase in acceleration of a sliding droplet compared to a control tube depending on the inclination angle. Compared to a free falling droplet, the superhydrophobic tube reduced the acceleration by only 38.55%, as compared to a 99.99% reduction for a control tube. The superhydrophobic tubes are blood repellent. Blood droplets (35 µL) roll through the tubes at 15° sliding angles without leaving a bloodstain. The tube surface is resistant to adhesion of activated platelets unlike planar control titania and smooth PDMS surfaces.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
Similar articles
-
Biomimetic superhydrophobic and highly oleophobic cotton textiles.Langmuir. 2007 Dec 18;23(26):13158-63. doi: 10.1021/la702174x. Epub 2007 Nov 7. Langmuir. 2007. PMID: 17985939
-
Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.Soft Matter. 2016 Aug 21;12(31):6526-35. doi: 10.1039/c6sm01095d. Epub 2016 Jul 15. Soft Matter. 2016. PMID: 27418238
-
Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.Langmuir. 2013 Mar 12;29(10):3274-9. doi: 10.1021/la304492c. Epub 2013 Feb 25. Langmuir. 2013. PMID: 23391207
-
Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review.Adv Colloid Interface Sci. 2022 Aug;306:102724. doi: 10.1016/j.cis.2022.102724. Epub 2022 Jun 25. Adv Colloid Interface Sci. 2022. PMID: 35780752 Review.
-
Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.Acc Chem Res. 2010 Mar 16;43(3):368-77. doi: 10.1021/ar900205g. Acc Chem Res. 2010. PMID: 19954162 Review.
Cited by
-
Recent Developments in Blood-Compatible Superhydrophobic Surfaces.Polymers (Basel). 2022 Mar 8;14(6):1075. doi: 10.3390/polym14061075. Polymers (Basel). 2022. PMID: 35335407 Free PMC article. Review.
-
Fabrication and Characterization of Superhydrophobic Graphene/Titanium Dioxide Nanoparticles Composite.Polymers (Basel). 2021 Dec 30;14(1):122. doi: 10.3390/polym14010122. Polymers (Basel). 2021. PMID: 35012144 Free PMC article.
-
Tailoring Materials with Specific Wettability in Biomedical Engineering.Adv Sci (Weinh). 2021 Oct;8(19):e2100126. doi: 10.1002/advs.202100126. Epub 2021 Aug 8. Adv Sci (Weinh). 2021. PMID: 34369090 Free PMC article. Review.
-
Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices.Int J Mol Sci. 2021 Mar 24;22(7):3341. doi: 10.3390/ijms22073341. Int J Mol Sci. 2021. PMID: 33805207 Free PMC article. Review.
-
Multiscale Hierarchical Surface Patterns by Coupling Optical Patterning and Thermal Shrinkage.ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15563-15571. doi: 10.1021/acsami.0c22436. Epub 2021 Mar 23. ACS Appl Mater Interfaces. 2021. PMID: 33756081 Free PMC article.
References
-
- Quéré D. Non-sticking drops. Rep. Prog. Phys. 2005;68:2495. doi: 10.1088/0034-4885/68/11/R01. - DOI
-
- Choi C-H, Ulmanella U, Kim J, Ho C-M, Kim C-J. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 1994-Present. 2006;18:87105.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
