Gut microbiome production of short-chain fatty acids and obesity in children

Eur J Clin Microbiol Infect Dis. 2018 Apr;37(4):621-625. doi: 10.1007/s10096-017-3143-0. Epub 2017 Dec 2.

Abstract

Obesity has been a worldwide multifactorial epidemic malady for the last 2 decades. Changes in gut microbiota composition and its metabolites - short-chain fatty acids (SCFAs) - have been associated with obesity. Recent evidence suggests that SCFAs made by the gut microbiota may regulate directly or indirectly physiological and pathological processes in relation to obesity. We review the influence of gut microbiota in energy, glucose, and lipid homeostasis control via their metabolites. Gut microbial disturbances in obese children may have a role in their metabolism. At first glance, excessive short-chain fatty acids produced by a particular gut microbiota represent an additional energy source, and should cause an imbalance in energy regulation, contributing to obesity. However, simultaneously, SCFA participates in glucose-stimulated insulin secretion from the pancreatic β-cells through interaction with the FFA2 and FFA3 receptors, and release of peptide hormones which control appetite. This apparent contradictory situation may indicate the involvement of additional particular bacteria or bacterial components or metabolites that may trigger regulatory cascades by interaction with some G-protein-coupled membrane receptors.

Publication types

  • Review

MeSH terms

  • Adolescent
  • Child
  • Fatty Acids, Volatile* / metabolism
  • Fatty Acids, Volatile* / physiology
  • Gastrointestinal Microbiome*
  • Humans
  • Metabolome / physiology
  • Pediatric Obesity*

Substances

  • Fatty Acids, Volatile