Rat Brain Hexokinase: Further Studies on the Specificity of the Hexose and Hexose 6-phosphate Binding Sites

Arch Biochem Biophys. 1989 Mar;269(2):517-25. doi: 10.1016/0003-9861(89)90135-5.

Abstract

Based on the lack of correlation between the ability of various hexoses to serve as substrate and the ability of the corresponding hexose 6-phosphates to inhibit brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), R. K. Crane and A. Sols (1954, J. Biol. Chem. 210, 597-606) proposed that this enzyme possesses two discrete sites capable of binding hexose moieties, one serving as the substrate binding site and a second, regulatory in function, to which inhibitory 6-phosphates bind. Subsequent work has provided further experimental support for this proposal. The pioneering work by Crane and Sols focused primarily on the specificity of these sites with respect to requirements for orientation of hydroxyl substituents at the various positions of the pyranose ring. The present study explores additional aspects of the specificity of these sites, namely, the effect of substitution of a sulfur atom in place of the oxygen in the pyranose ring on ability to serve as substrate or inhibitor, and the effect of modification in charge of the substituent at the 6-position on inhibitory effectiveness. 5-Thioglucose is a linear competitive (versus glucose) inhibitor of rat brain hexokinase, with a Ki of about 0.2 mM, and is a linear mixed inhibitor (versus ATP), with Ki values in this same range. 5-Thioglucose is not, however, readily phosphorylated by brain hexokinase. Thus, although 5-thioglucose binds with moderate affinity to the glucose binding site, it is not effectively used as a substrate of the enzyme. Inhibition of brain hexokinase by glucose 6-phosphate or its analogs has been found to require a dianionic substituent at the 6-position. The 6-fluorophosphate derivative and glucose 6-sulfate are poor inhibitors of the enzyme, and the Ki for inhibition by 1,5-anhydroglucitol 6-phosphate increases markedly at pH values below the pK of the 6-phosphate group, indicating that the monoanionic form is ineffective as an inhibitor. In contrast to the detrimental effect that substitution of the oxygen atom in the pyranose ring with a sulfur has on ability to serve as substrate, 5-thio analogs are considerably more effective as inhibitors, the Ki for inhibition by 5-thioglucose 6-phosphate being 10-fold lower than that seen with glucose 6-phosphate. This effect of the heteroatom substitution can partially offset the decreased inhibition resulting from monoanionic character at the 6-position, but the 6-fluorophosphate derivative of 5-thioglucose 6-phosphate still inhibits with a Ki about 1000-fold greater than that seen with 5-thioglucose 6-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / enzymology*
  • Glucose / analogs & derivatives
  • Glucose / pharmacology
  • Hexokinase / antagonists & inhibitors
  • Hexokinase / metabolism*
  • Hexosephosphates / pharmacology
  • Kinetics
  • Protein Binding
  • Rats
  • Substrate Specificity

Substances

  • Hexosephosphates
  • Hexokinase
  • Glucose