A Riemannian Framework for Linear and Quadratic Discriminant Analysis on the Tangent Space of Shapes

Conf Comput Vis Pattern Recognit Workshops. 2017;2017:726-734. doi: 10.1109/CVPRW.2017.102. Epub 2017 Aug 24.

Abstract

We present a Riemannian framework for linear and quadratic discriminant classification on the tangent plane of the shape space of curves. The shape space is infinite dimensional and is constructed out of square root velocity functions of curves. We introduce the notion of mean and covariance of shape-valued random variables and samples from a tangent space to the pre-shapes (invariant to translation and scaling) and then extend it to the full shape space (rotational invariance). The shape observations from the population are approximated by coefficients of a Fourier basis of the tangent space. The algorithms for linear and quadratic discriminant analysis are then defined using reduced dimensional features obtained by projecting the original shape observations on to the truncated Fourier basis. We show classification results on synthetic data and shapes of cortical sulci, corpus callosum curves, as well as facial midline curve profiles from patients with fetal alcohol syndrome (FAS).