Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

Cardiovasc Diabetol. 2017 Dec 4;16(1):155. doi: 10.1186/s12933-017-0638-z.


Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a 'wicked triumvirate': (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia-reperfusion (I-R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.

Keywords: Cardioprotection; Caveolae; Cholesterol; Diabetes; Fatty acids; Glucose transport; Infarction; Phospholipids.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anticholesteremic Agents / therapeutic use
  • Diabetes Mellitus, Type 1 / drug therapy
  • Diabetes Mellitus, Type 1 / metabolism*
  • Diabetes Mellitus, Type 1 / pathology
  • Diabetes Mellitus, Type 1 / physiopathology
  • Diabetes Mellitus, Type 2 / drug therapy
  • Diabetes Mellitus, Type 2 / metabolism*
  • Diabetes Mellitus, Type 2 / pathology
  • Diabetes Mellitus, Type 2 / physiopathology
  • Diabetic Cardiomyopathies / metabolism*
  • Diabetic Cardiomyopathies / pathology
  • Diabetic Cardiomyopathies / physiopathology
  • Diabetic Cardiomyopathies / prevention & control
  • Diet / adverse effects
  • Disease Models, Animal
  • Energy Metabolism
  • Exercise
  • Humans
  • Hypoglycemic Agents / adverse effects
  • Membrane Lipids / metabolism
  • Membrane Microdomains / drug effects
  • Membrane Microdomains / metabolism*
  • Membrane Microdomains / pathology
  • Myocardial Infarction / metabolism*
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardial Infarction / prevention & control
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / physiopathology
  • Myocardial Reperfusion Injury / prevention & control
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Prognosis
  • Protective Factors
  • Risk Factors
  • Sarcolemma / metabolism
  • Sarcolemma / pathology
  • Signal Transduction


  • Anticholesteremic Agents
  • Hypoglycemic Agents
  • Membrane Lipids