Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 1;6(7):4174-4178.
doi: 10.1039/c5sc00941c. Epub 2015 Apr 30.

Palladium-catalyzed Reductive Coupling of Phenols With Anilines and Amines: Efficient Conversion of Phenolic Lignin Model Monomers and Analogues to Cyclohexylamines

Affiliations
Free PMC article

Palladium-catalyzed Reductive Coupling of Phenols With Anilines and Amines: Efficient Conversion of Phenolic Lignin Model Monomers and Analogues to Cyclohexylamines

Zhengwang Chen et al. Chem Sci. .
Free PMC article

Abstract

Phenols, being readily available from naturally abundant lignins, are important future feedstocks for the renewable production of fuels, chemicals, and energy. Herein, a highly efficient Pd-catalyzed direct coupling of phenolic lignin model monomers and analogues with anilines to give cyclohexylamines using cheap and safe sodium formate as hydrogen donor is described. A variety of secondary and tertiary substituted cyclohexylamines can be synthesized under convenient conditions in moderate to excellent yields.

Figures

Scheme 1
Scheme 1. Methods for direct amine alkylations.
Scheme 2
Scheme 2. Pd-catalyzed formation of secondary amines from 3-substituted phenols and anilines.
Scheme 3
Scheme 3. Tentative mechanism for the reaction between phenol and aniline.

Similar articles

See all similar articles

Cited by 2 articles

References

    1. Huber G. W., Corma A. Angew. Chem., Int. Ed. 2007;46:7184–7201. - PubMed
    2. Chheda J. N., Huber G. W., Dumesic J. A. Angew. Chem., Int. Ed. 2007;46:7164–7183. - PubMed
    1. Stöcker M. Angew. Chem., Int. Ed. 2008;47:9200–9211. - PubMed
    1. Zakzeski J., Bruijnincx P. C. A., Jongerius A. L., Weckhuysen B. M. Chem. Rev. 2010;110:3552–3599. - PubMed
    1. For selected examples, see:

    2. Hanson S. K., Wu R., “Pete” Silks L. A. Angew. Chem., Int. Ed. 2012;51:3410–3413. - PubMed
    3. Rahimi A., Ulbrich A., Coon J. J., Stahl S. S. Nature. 2014;515:249–252. - PubMed
    4. Rahimi A., Azarpira A., Kim H., Ralph J., Stahl S. S. J. Am. Chem. Soc. 2013;135:6415–6418. - PubMed
    5. Lim S. H., Nahm K., Ra C. S., Cho D. W., Yoon U. C., Latham J. A., Dunaway-Mariano D., Mariano P. S. J. Org. Chem. 2013;78:9431–9443. - PubMed
    6. Biannic B., Bozell J. J. Org. Lett. 2013;15:2730–2733. - PubMed
    7. Walsh K., Sneddon H. F., Moody C. J. Org. Lett. 2014;16:5224–5227. - PubMed
    1. For selected examples, see:

    2. Sergeev A. G., Hartwig J. F. Science. 2011;332:439–443. - PubMed
    3. Zhao C., Kou Y., Lemonidou A. A., Li X., Lercher J. A. Angew. Chem., Int. Ed. 2009;48:3987–3990. - PubMed
    4. Yan N., Yuan Y., Dykeman R., Kou Y., Dyson P. J. Angew. Chem., Int. Ed. 2010;49:5549–5553. - PubMed
    5. He J., Zhao C., Lercher J. A. J. Am. Chem. Soc. 2012;134:20768–20775. - PubMed
    6. Sergeev A. G., Webb J. D., Hartwig J. F. J. Am. Chem. Soc. 2012;134:20226–20229. - PubMed
    7. Shin J. Y., Jung D. J., Lee S. ACS Catal. 2013;3:525–528.
    8. Zhao C., Song W., Lercher J. A. ACS Catal. 2012;2:2714–2723.
    9. Parsell T. H., Owen B. C., Klein I., Jarrell T. M., Marcum C. L., Haupert L. J., Amundson L. M., Kenttämaa H. I., Ribeiro F., Miller J. T., Abu-Omar M. M. Chem. Sci. 2013;4:806–813.
    10. Mori K., Furubayashi K., Okada S., Yamashita H. Chem. Commun. 2012;48:8886–8888. - PubMed
Feedback