Cytosolic and Nuclear Delivery of CRISPR/Cas9-ribonucleoprotein for Gene Editing Using Arginine Functionalized Gold Nanoparticles

Bio Protoc. 2017 Oct 20;7(20):e2586. doi: 10.21769/BioProtoc.2586.

Abstract

In this protocol, engineered Cas9-ribonucleoprotein (Cas9 protein and sgRNA, together called Cas9-RNP) and gold nanoparticles are used to make nanoassemblies that are employed to deliver Cas9-RNP into cell cytoplasm and nucleus. Cas9 protein is engineered with an N-terminus glutamic acid tag (E-tag or En, where n = the number of glutamic acid in an E-tag and usually n = 15 or 20), C-terminus nuclear localizing signal (NLS), and a C-terminus 6xHis-tag. [Cas9En hereafter] To use this protocol, the first step is to generate the required materials (gold nanoparticles, recombinant Cas9En, and sgRNA). Laboratory-synthesis of gold nanoparticles can take up to a few weeks, but can be synthesized in large batches that can be used for many years without compromising the quality. Cas9En can be cloned from a regular SpCas9 gene (Addgene plasmid id = 47327), and expressed and purified using standard laboratory procedures which are not a part of this protocol. Similarly, sgRNA can be laboratory-synthesized using in vitro transcription from a template gene (Addgene plasmid id = 51765) or can be purchased from various sources. Once these materials are ready, it takes about ~30 min to make the Cas9En-RNP complex and 10 min to make the Cas9En-RNP/nanoparticles nanoassemblies, which are immediately used for delivery (Figure 1). Complete delivery (90-95% cytoplasmic and nuclear delivery) is achieved in less than 3 h. Follow-up editing experiments require additional time based on users' need. Synthesis of arginine functionalized gold nanoparticles (ArgNPs) (Yang et al., 2011), expression of recombinant Cas9En, and in vitro synthesis of sgRNA is reported elsewhere (Mout et al., 2017). We report here only the generation of the delivery vehicle i.e., the fabrication of Cas9En-RNP/ArgNPs nanoassembly.

Keywords: Cas9-ribonucleoprotein delivery; Cytosolic delivery; Gene editing; Nanoparticles; Protocol for CRISPR/Cas9 delivery.