LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes
- PMID: 29228262
- PMCID: PMC5751070
- DOI: 10.1093/gbe/evx260
LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes
Abstract
The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
Keywords: Picea; Pinus; angiosperm; gene conversion; genome size; gymnosperm; recombination suppression; retroelement.
© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures
Similar articles
-
Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.J Mol Evol. 2016 Jun;82(6):251-63. doi: 10.1007/s00239-016-9741-0. Epub 2016 May 6. J Mol Evol. 2016. PMID: 27154235
-
Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?Genome Res. 2009 Dec;19(12):2221-30. doi: 10.1101/gr.083899.108. Epub 2009 Sep 29. Genome Res. 2009. PMID: 19789376 Free PMC article.
-
The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution.Gene. 2015 Aug 15;568(1):89-99. doi: 10.1016/j.gene.2015.05.028. Epub 2015 May 14. Gene. 2015. PMID: 25982862
-
Co-evolution of plant LTR-retrotransposons and their host genomes.Protein Cell. 2013 Jul;4(7):493-501. doi: 10.1007/s13238-013-3037-6. Epub 2013 Jun 23. Protein Cell. 2013. PMID: 23794032 Free PMC article. Review.
-
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.Cytogenet Genome Res. 2005;110(1-4):91-107. doi: 10.1159/000084941. Cytogenet Genome Res. 2005. PMID: 16093661 Review.
Cited by
-
Einkorn genomics sheds light on history of the oldest domesticated wheat.Nature. 2023 Aug;620(7975):830-838. doi: 10.1038/s41586-023-06389-7. Epub 2023 Aug 2. Nature. 2023. PMID: 37532937 Free PMC article.
-
The Role of Chromatin Modifications in the Evolution of Giant Plant Genomes.Plants (Basel). 2023 May 30;12(11):2159. doi: 10.3390/plants12112159. Plants (Basel). 2023. PMID: 37299136 Free PMC article.
-
Applying molecular and genetic methods to trees and their fungal communities.Appl Microbiol Biotechnol. 2023 May;107(9):2783-2830. doi: 10.1007/s00253-023-12480-w. Epub 2023 Mar 29. Appl Microbiol Biotechnol. 2023. PMID: 36988668 Free PMC article. Review.
-
PlantLTRdb: An interactive database for 195 plant species LTR-retrotransposons.Front Plant Sci. 2023 Mar 6;14:1134627. doi: 10.3389/fpls.2023.1134627. eCollection 2023. Front Plant Sci. 2023. PMID: 36950350 Free PMC article.
-
The giant diploid faba genome unlocks variation in a global protein crop.Nature. 2023 Mar;615(7953):652-659. doi: 10.1038/s41586-023-05791-5. Epub 2023 Mar 8. Nature. 2023. PMID: 36890232 Free PMC article.
References
-
- Amborella Genome Project 2013. The Amborella genome and the evolution of flowering plants. Science 342:1241089. doi: 10.1126/science.1241089 - DOI - PubMed
-
- Avramidou EV, Doulis AG, Aravanopoulos FA.. 2015. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene 562(2):180–187.http://dx.doi.org/10.1016/j.gene.2015.02.068 - DOI - PubMed
-
- Bennett MD, Leitch IJ.. 2012. Plant DNA C-values database (Release 6.0, Dec. 2012). Available from: http://data.kew.org/cvalues/. Last Accessed 20 April 2016.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
