Ten principles of heterochromatin formation and function
- PMID: 29235574
- PMCID: PMC6822695
- DOI: 10.1038/nrm.2017.119
Ten principles of heterochromatin formation and function
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Conflict of interest statement
Competing interests statement
The authors declare no competing interests.
Figures
Similar articles
-
Studies on the mechanism of RNAi-dependent heterochromatin assembly.Cold Spring Harb Symp Quant Biol. 2006;71:461-71. doi: 10.1101/sqb.2006.71.044. Cold Spring Harb Symp Quant Biol. 2006. PMID: 17381328 Review.
-
RNA interference and epigenetic control of heterochromatin assembly in fission yeast.Cold Spring Harb Symp Quant Biol. 2004;69:419-27. doi: 10.1101/sqb.2004.69.419. Cold Spring Harb Symp Quant Biol. 2004. PMID: 16117676 No abstract available.
-
RNAi-mediated heterochromatin assembly in fission yeast.Cold Spring Harb Symp Quant Biol. 2006;71:487-96. doi: 10.1101/sqb.2006.71.059. Cold Spring Harb Symp Quant Biol. 2006. PMID: 17381331 Review.
-
Yeast epigenetics: the inheritance of histone modification states.Biosci Rep. 2019 May 7;39(5):BSR20182006. doi: 10.1042/BSR20182006. Print 2019 May 31. Biosci Rep. 2019. PMID: 30877183 Free PMC article. Review.
-
Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing.Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15548-55. doi: 10.1073/pnas.1522127112. Epub 2015 Dec 2. Proc Natl Acad Sci U S A. 2015. PMID: 26631744 Free PMC article.
Cited by
-
Heterochromatin in plant meiosis.Nucleus. 2024 Dec;15(1):2328719. doi: 10.1080/19491034.2024.2328719. Epub 2024 Mar 15. Nucleus. 2024. PMID: 38488152 Free PMC article. Review.
-
The Causes for Genomic Instability and How to Try and Reduce Them Through Rational Design of Synthetic DNA.Methods Mol Biol. 2024;2760:371-392. doi: 10.1007/978-1-0716-3658-9_21. Methods Mol Biol. 2024. PMID: 38468099
-
Structural insights into the binding mechanism of Clr4 methyltransferase to H3K9 methylated nucleosome.Sci Rep. 2024 Mar 5;14(1):5438. doi: 10.1038/s41598-024-56248-2. Sci Rep. 2024. PMID: 38443490 Free PMC article.
-
Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes.Curr Opin Oncol. 2024 Mar 1;36(2):82-92. doi: 10.1097/CCO.0000000000001020. Epub 2024 Jan 17. Curr Opin Oncol. 2024. PMID: 38441107 Review.
-
Chromatin accessibility profiling methods.Nat Rev Methods Primers. 2021;1:10. doi: 10.1038/s43586-020-00008-9. Epub 2021 Jan 21. Nat Rev Methods Primers. 2021. PMID: 38410680 Free PMC article.
References
-
- Zhou CY, Johnson S Gamarra NI & Narlikar GJ Mechanisms of ATP-dependent chromatin remodeling motots. Annu. Rev. Biophys 45, 153–181 (2016). - PubMed
-
- Rea S et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). - PubMed
-
- Lachner M, O’Carroll D, Rea S, Mechtler K &Jenuwein T Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
