Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila

Mol Biol Cell. 2018 Feb 15;29(4):466-478. doi: 10.1091/mbc.E17-07-0451. Epub 2017 Dec 13.

Abstract

Condensin is a protein complex with diverse functions in chromatin packaging and chromosome condensation and segregation. We studied condensin in the evolutionarily distant protist model Tetrahymena, which features noncanonical nuclear organization and divisions. In Tetrahymena, the germline and soma are partitioned into two different nuclei within a single cell. Consistent with their functional specializations in sexual reproduction and gene expression, condensins of the germline nucleus and the polyploid somatic nucleus are composed of different subunits. Mitosis and meiosis of the germline nucleus and amitotic division of the somatic nucleus are all dependent on condensins. In condensin-depleted cells, a chromosome condensation defect was most striking at meiotic metaphase, when Tetrahymena chromosomes are normally most densely packaged. Live imaging of meiotic divisions in condensin-depleted cells showed repeated nuclear stretching and contraction as the chromosomes failed to separate. Condensin depletion also fundamentally altered chromosome arrangement in the polyploid somatic nucleus: multiple copies of homologous chromosomes tended to cluster, consistent with a previous model of condensin suppressing default somatic pairing. We propose that failure to form discrete chromosome territories is the common cause of the defects observed in the absence of condensins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / physiology*
  • Animals
  • Cell Nucleus / metabolism
  • Cell Nucleus / ultrastructure
  • Chromatin / metabolism
  • Chromosome Segregation*
  • DNA-Binding Proteins / physiology*
  • In Situ Hybridization, Fluorescence
  • Meiosis / physiology
  • Microscopy, Fluorescence
  • Mitosis / physiology
  • Multiprotein Complexes / physiology*
  • Polyploidy
  • Tetrahymena thermophila / cytology
  • Tetrahymena thermophila / physiology*

Substances

  • Chromatin
  • DNA-Binding Proteins
  • Multiprotein Complexes
  • condensin complexes
  • Adenosine Triphosphatases