Long-term monitoring of breath methane

Sci Total Environ. 2018 May 15:624:69-77. doi: 10.1016/j.scitotenv.2017.12.097. Epub 2017 Dec 13.

Abstract

In recent years, methane as a component of exhaled human breath has been considered as a potential bioindicator providing information on microbial activity in the intestinal tract. Several studies indicated a relationship between breath methane status and specific gastrointestinal disease. So far, almost no attention has been given to the temporal variability of breath methane production by individual persons. Thus here, for the first time, long-term monitoring was carried out measuring breath methane of three volunteers over periods between 196 and 1002days. Results were evaluated taking into consideration the health status and specific medical intervention events for each individual during the monitoring period, and included a gastroscopy procedure, a vaccination, a dietary change, and chelate therapy. As a major outcome, breath methane mixing ratios show considerable variability within a person-specific range of values. Interestingly, decreased breath methane production often coincided with gastrointestinal complaints whereas influenza infections were mostly accompanied by increased breath methane production. A gastroscopic examination as well as a change to a low-fructose diet led to a dramatic shift of methane mixing ratios from high to low methane production. In contrast, a typhus vaccination as well as single chelate injections resulted in significant short-term methane peaks. Thus, this study clearly shows that humans can change from high to low methane emitters and vice versa within relatively short time periods. In the case of low to medium methane emitters the increase observed in methane mixing ratios, likely resulting from immune reactions and inflammatory processes, might indicate non-microbial methane formation under aerobic conditions. Although detailed reaction pathways are not yet known, aerobic methane formation might be related to cellular oxidative-reductive stress reactions. However, a detailed understanding of the pathways involved in human methane formation is necessary to enable comprehensive interpretation of methane breath levels.

MeSH terms

  • Adult
  • Breath Tests*
  • Female
  • Health Status
  • Humans
  • Male
  • Methane / analysis*
  • Middle Aged
  • Oxidative Stress

Substances

  • Methane