Review of four major distinct types of human phospholipase A2
- PMID: 29248300
- PMCID: PMC5807221
- DOI: 10.1016/j.jbior.2017.10.009
Review of four major distinct types of human phospholipase A2
Abstract
The phospholipase A2 superfamily of enzymes plays a significant role in the development and progression of numerous inflammatory diseases. Through their catalytic action on membrane phospholipids, phospholipases are the upstream regulators of the eicosanoid pathway releasing free fatty acids for cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes which produce various well-known inflammatory mediators including leukotrienes, thromboxanes and prostaglandins. Elucidating the association of phospholipases A2 with the membrane, the extraction and binding of phospholipid substrates, and their interactions with small-molecule inhibitors is crucial for the development of new anti-inflammatory therapeutics. Studying phospholipases has been challenging because they act on the surface of cellular membranes and micelles. Multidisciplinary approaches including hydrogen/deuterium exchange mass spectrometry, molecular dynamics simulations, and other computer-aided drug design techniques have been successfully employed by our laboratory to study interactions of phospholipases with membranes, phospholipid substrates and inhibitors. This review summarizes the application of these techniques to study four human recombinant phospholipases A2.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Figures
Similar articles
-
Membrane and inhibitor interactions of intracellular phospholipases A2.Adv Biol Regul. 2016 May;61:17-24. doi: 10.1016/j.jbior.2015.11.011. Epub 2015 Dec 19. Adv Biol Regul. 2016. PMID: 26774606 Free PMC article. Review.
-
Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes.J Biol Chem. 2013 Jan 18;288(3):1806-13. doi: 10.1074/jbc.R112.421909. Epub 2012 Dec 3. J Biol Chem. 2013. PMID: 23209293 Free PMC article. Review.
-
Membrane Association Allosterically Regulates Phospholipase A2 Enzymes and Their Specificity.Acc Chem Res. 2022 Dec 6;55(23):3303-3311. doi: 10.1021/acs.accounts.2c00497. Epub 2022 Oct 31. Acc Chem Res. 2022. PMID: 36315840 Free PMC article.
-
Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates.Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):E516-25. doi: 10.1073/pnas.1424651112. Epub 2015 Jan 26. Proc Natl Acad Sci U S A. 2015. PMID: 25624474 Free PMC article.
-
Computer-aided drug design guided by hydrogen/deuterium exchange mass spectrometry: A powerful combination for the development of potent and selective inhibitors of Group VIA calcium-independent phospholipase A2.Bioorg Med Chem. 2016 Oct 15;24(20):4801-4811. doi: 10.1016/j.bmc.2016.05.009. Epub 2016 May 10. Bioorg Med Chem. 2016. PMID: 27320659 Free PMC article.
Cited by
-
Highly Potent 2-Oxoester Inhibitors of Cytosolic Phospholipase A2 (GIVA cPLA2).ACS Omega. 2018 Aug 31;3(8):8843-8853. doi: 10.1021/acsomega.8b01214. Epub 2018 Aug 9. ACS Omega. 2018. PMID: 30197994 Free PMC article.
-
Phospholipid subcellular localization and dynamics.J Biol Chem. 2018 Apr 27;293(17):6230-6240. doi: 10.1074/jbc.R117.000582. Epub 2018 Mar 27. J Biol Chem. 2018. PMID: 29588369 Free PMC article. Review.
-
Phospholipase C: underrated players in microbial infections.Front Cell Infect Microbiol. 2023 Apr 17;13:1089374. doi: 10.3389/fcimb.2023.1089374. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 37139494 Free PMC article. Review.
-
The phospholipase A2 activity of peroxiredoxin 6.J Lipid Res. 2018 Jul;59(7):1132-1147. doi: 10.1194/jlr.R082578. Epub 2018 May 1. J Lipid Res. 2018. PMID: 29716959 Free PMC article. Review.
-
The Biosynthesis of Enzymatically Oxidized Lipids.Front Endocrinol (Lausanne). 2020 Nov 19;11:591819. doi: 10.3389/fendo.2020.591819. eCollection 2020. Front Endocrinol (Lausanne). 2020. PMID: 33329396 Free PMC article. Review.
References
-
- Ackermann EJ, Kempner ES, Dennis EA. Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization J Biol Chem. 1994;269:9227–9233. - PubMed
-
- Balsinde J, Balboa MA, Dennis EA. Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J Biol Chem. 1997;272:29317–29321. - PubMed
-
- Blackie JA, Bloomer JC, Brown MJ, Cheng HY, Elliott RL, Hammond B, Hickey DM, Ife RJ, Leach CA, Lewis VA, Macphee CH, Milliner KJ, Moores KE, Pinto IL, Smith SA, Stansfield IG, Stanway SJ, Taylor MA, Theobald CJ, Whittaker CM. The discovery of SB-435495. A potent, orally active inhibitor of lipoprotein-associated phospholipase A2 for evaluation in man. Bioorg Med Chem Lett. 2002;12:2603–2606. - PubMed
-
- Blackie JA, Bloomer JC, Brown MJ, Cheng HY, Hammond B, Hickey DM, Ife RJ, Leach CA, Lewis VA, Macphee CH, Milliner KJ, Moores KE, Pinto IL, Smith SA, Stansfield IG, Stanway SJ, Taylor MA, Theobald CJ. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett. 2003;13:1067–1070. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
