Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke

J Neurol Sci. 2018 Jan 15:384:21-29. doi: 10.1016/j.jns.2017.11.007. Epub 2017 Nov 7.

Abstract

Movement is traditionally viewed as a process that involves motor brain regions. However, movement also implicates non-motor regions such as prefrontal and parietal cortex, regions whose integrity may thus be important for motor recovery after stroke. Importantly, focal brain damage can affect neural functioning within and between distinct brain networks implicated in the damage. The aim of this study is to investigate how resting state connectivity (rs-connectivity) within and between motor and frontoparietal networks are affected post-stroke in correlation with motor outcome. Twenty-seven participants with chronic stroke with unilateral upper limb deficits underwent motor assessments and magnetic resonance imaging. Participants completed the Chedoke-McMaster Stroke Assessment as a measure of arm (CMSA-Arm) and hand (CMSA-Hand) impairment and the Action Research Arm Test (ARAT) as a measure of motor function. We used a seed-based rs-connectivity approach defining the motor (seed=contralesional primary motor cortex (M1)) and frontoparietal (seed=contralesional dorsolateral prefrontal cortex (DLPFC)) networks. We analyzed the rs-connectivity within each network (intra-network connectivity) and between both networks (inter-network connectivity), and performed correlations between: a) intra-network connectivity and motor assessment scores; b) inter-network connectivity and motor assessment scores. We found: a) Participants with high rs-connectivity within the motor network (between M1 and supplementary motor area) have higher CMSA-Hand stage (z=3.62, p=0.003) and higher ARAT score (z=3.41, p=0.02). Rs-connectivity within the motor network was not significantly correlated with CMSA-Arm stage (z=1.83, p>0.05); b) Participants with high rs-connectivity within the frontoparietal network (between DLPFC and mid-ventrolateral prefrontal cortex) have higher CMSA-Hand stage (z=3.64, p=0.01). Rs-connectivity within the frontoparietal network was not significantly correlated with CMSA-Arm stage (z=0.93, p=0.03) or ARAT score (z=2.53, p=0.05); and c) Participants with high rs-connectivity between motor and frontoparietal networks have higher CMSA-Hand stage (rs=0.54, p=0.01) and higher ARAT score (rs=0.54, p=0.009). Rs-connectivity between the motor and frontoparietal networks was not significantly correlated with CMSA-Arm stage (rs=0.34, p=0.13). Taken together, the connectivity within and between the motor and frontoparietal networks correlate with motor outcome post-stroke. The integrity of these regions may be important for an individual's motor outcome. Motor-frontoparietal connectivity may be a potential biomarker of motor recovery post-stroke.

Keywords: Chronic stroke; Frontoparietal network; Function; Impairment; Motor network; Resting state fMRI.

MeSH terms

  • Adult
  • Aged
  • Brain Mapping
  • Chronic Disease
  • Cross-Sectional Studies
  • Disability Evaluation
  • Female
  • Frontal Lobe / diagnostic imaging
  • Frontal Lobe / physiopathology*
  • Hand / physiopathology*
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Motor Cortex / diagnostic imaging
  • Motor Cortex / physiopathology*
  • Motor Skills* / physiology
  • Neural Pathways / diagnostic imaging
  • Neural Pathways / physiopathology
  • Parietal Lobe / diagnostic imaging
  • Parietal Lobe / physiopathology*
  • Proof of Concept Study
  • Recovery of Function / physiology
  • Rest
  • Stroke / diagnostic imaging
  • Stroke / physiopathology*