Compressive yield stress of depletion gels from stationary centrifugation profiles

J Phys Condens Matter. 2018 Jan 31;30(4):044005. doi: 10.1088/1361-648X/aaa2d1.

Abstract

We have investigated the stationary sedimentation profiles of colloidal gels obtained by an arrested phase-separation process driven by depletion forces, which have been compressed either by natural gravity or by a centrifugal acceleration ranging between 6g and 2300g. Our measurements show that the gel rheological properties display a drastic change when the gel particle volume fraction exceeds a value [Formula: see text], which barely depends on the strength of the interparticle attractive forces that consolidate the network. In particular, the gel compressive yield stress [Formula: see text], which increases as [Formula: see text] for [Formula: see text], displays a diverging behaviour for [Formula: see text], with an asymptotic value that is close to the random close packing value for hard spheres. The evidence we obtained suggests that [Formula: see text] basically coincides with the liquid (colloid-rich) branch of the metastable coexistence curve, rather than with the lower (and ϕ-dependent) values expected for an attractive glass line penetrating inside the coexistence region.