Hyperbaric Therapy For Skin Grafts And Flaps

Book
In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.
.

Excerpt

"Hyperbaric oxygen therapy (HBO2T) is neither necessary nor recommended for the support of normal, uncompromised grafts or flaps. However, in tissue compromised by irradiation or in other cases where there is decreased perfusion or hypoxia, HBO2T has been shown to be extremely useful in flap salvage. Hyperbaric oxygen can help maximize the viability of the compromised tissue thereby reducing the need for regrafting or repeat flap procedures".

This is the official stance of the Society of Undersea and Hyperbaric Medicine which is the international organization that sets standards for indications and implementation of hyperbaric medicine.

A skin graft or flap involves transferring healthy skin, either full thickness or partial thickness, to a denuded area of the body to aid in healing. There are free-transfer grafts where skin, usually partial thickness, is removed from one area and placed at a more distant site, and there are rotation flaps. Rotation flaps are done by surgically freeing a full thickness amount of skin and rotating it to a nearby location. This involves preserving the native blood supply. Care must be taken with these graft so as not to compromise this native blood supply either from undue tension or torsion of the pedicle. Hyperbaric medicine has been shown to be useful in improving healing and providing higher success rates in compromised grafts and flaps. Hyperbaric oxygen therapy has several effects that are beneficial for healing these compromised grafts. It has been proven that HBO2 therapy will increase the oxygen carrying capacity of plasma up to 7%. This has been shown to be adequate to keep swine alive after all of their red blood cells have been removed. Hyperbaric oxygen therapy will result in increasing neovascularization and decrease tissue edema. This combination will improve the tissue environment in areas of vascular compromise. Hyperbaric oxygen effects are also advantageous in situations of crush injuries with grafts. These situations result in large amounts of edema, compromising any grafts done in these locations. Burn patients often require skin grafting. The burn setting presents with several complex processes that can compromise graft healing. Burns cause a hypercoagulable state in the microvascular. This will impede oxygen supply to these areas. HBO2 therapy increases neovascularization, thus improving blood supply to compromised areas. The increased oxygen-carrying capacity of the plasma will also aid in decreasing destruction of borderline tissues as time progresses. Localized edema is decreased with HBO2 therapy, which decreases tissue pressure and increases microvascular blood flow. Burn patients are susceptible to infections. HBO2 therapy helps lower infection rates by oxygen's bacteriostatic and bacteriocidal effect on certain microorganisms. Higher tissue oxygen content also neutralizes exotoxins.

Publication types

  • Study Guide