Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 1;124(5):1025-1035.
doi: 10.1002/cncr.31184. Epub 2017 Dec 19.

Bone mineral density in children with acute lymphoblastic leukemia

Affiliations
Free PMC article

Bone mineral density in children with acute lymphoblastic leukemia

Hiroto Inaba et al. Cancer. .
Free PMC article

Abstract

Background: Children with acute lymphoblastic leukemia (ALL) can develop reduced bone mineral density (BMD). However, data from patients who received treatment on a frontline regimen without cranial irradiation are limited, and no genome-wide analysis has been reported.

Methods: Lumbar BMD was evaluated by quantitative computed tomography at diagnosis, after 120 weeks of continuation therapy, and after 2 years off therapy in pediatric patients with ALL (ages 2-18 years at diagnosis) who were treated on the St. Jude Total XV Protocol. Clinical, pharmacokinetic, and genetic risk factors associated with decreased BMD Z-scores were evaluated.

Results: The median BMD Z-score in 363 patients was 0.06 at diagnosis, declined to -1.08 at week 120, but partly recovered to -0.72 after 2 years off therapy; BMD in patients with low BMD Z-scores at diagnosis remained low after therapy. Older age (≥10 years vs 2-9.9 years at diagnosis; P < .001), a higher BMD Z-score at diagnosis (P = .001), and a greater area under the plasma drug concentration-time curve for dexamethasone in weeks 7 and 8 of continuation therapy (P = .001) were associated with a greater decrease in BMD Z-score from diagnosis to week 120. Single-nucleotide polymorphisms in 2 genes important in osteogenesis and bone mineralization (COL11A1 [reference single-nucleotide polymorphism rs2622849]; P = 2.39 × 10-7 ] and NELL1 [rs11025915]; P = 4.07 × 10-6 ]) were associated with a decreased BMD Z-score. NELL1 (P = .003) also was associated with a greater dexamethasone area under the plasma drug concentration-time curve.

Conclusions: BMD Z-scores decreased during therapy, especially in patients who had clinical, pharmacokinetic, and genetic risk factors. Early recognition of BMD changes and strategies to optimize bone health are essential. Cancer 2018;124:1025-35. © 2017 American Cancer Society.

Keywords: acute lymphoblastic leukemia; bone mineral density; chemotherapy; children; single-nucleotide polymorphism.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest disclosures: The authors have declared no conflicts of interest.

Figures

Figure 1
Figure 1. CONSORT diagram
Abbreviations: BMD, bone mineral density; HSCT, hematopoietic stem cell transplant
Figure 2
Figure 2. Single-nucleotide polymorphisms that are associated with bone mineral density (BMD) Z-score changes from diagnosis to week 120 of continuation therapy
Data are adjusted for age at diagnosis, treatment risk, BMD Z-scores at diagnosis, and ancestry group. Manhattan plots (A) and box plots (B and C) for COL11A1 and NELL1 are shown.

Similar articles

Cited by

References

    1. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943–1955. - PMC - PubMed
    1. Leonard MB, Elmi A, Mostoufi-Moab S, et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab. 2010;95:1681–1689. - PMC - PubMed
    1. Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014;12:300–312. - PMC - PubMed
    1. van der Sluis IM, van den Heuvel-Eibrink MM, Hählen K, Krenning EP, de Muinck Keizer-Schrama SM. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr. 2002;141:204–210. - PubMed
    1. Halton JM, Atkinson SA, Fraher L, et al. Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. 1996;11:1774–1783. - PubMed

Publication types

MeSH terms