Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug-Sep;20(7-8):401-409.
doi: 10.1016/j.micinf.2017.11.009. Epub 2017 Dec 27.

Rickettsial genomics and the paradigm of genome reduction associated with increased virulence

Affiliations
Free article
Review

Rickettsial genomics and the paradigm of genome reduction associated with increased virulence

Awa Diop et al. Microbes Infect. 2018 Aug-Sep.
Free article

Abstract

Rickettsia species are arthropod endosymbiotic α-proteobacteria that can infect mammalian hosts during their obligate intracellular lifecycle, and cause a range of mild to severe diseases in humans. Paradoxically, during their adaptation to a bottleneck lifestyle, rickettsial genomes have undergone an evolution marked by a progressive chromosomic and plasmidic degradation resulting in a genome reduction from 1.5 to 1.1 Mb, with a coding capacity of 69-84%. A striking finding of rickettsial genomics has been that the most virulent species had genomes that were drastically reduced and degraded when compared to closely related less virulent or nonpathogenic species. This paradoxical evolution, which is not unique to members of the genus Rickettsia but has been identified as a convergent evolution of several major human pathogenic bacteria, parallels a selected loss of genes associated with transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules and recombination and DNA repair proteins. In addition, these bacteria have undergone a proliferation of genetic elements, notably short palindromic elements, whose role remains unknown. Recent proteomic and transcriptomics analyses have revealed a differential level or degradation of gene expression that may, at least partially, explain differences in virulence among Rickettsia species. However, future investigations are mandatory to provide novel insights into the mechanisms by which genomic reductive evolution contributes to an emergence of pathogenesis.

Keywords: Pathogenesis; Reductive evolution; Rickettsial genomics; Virulence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources