RAPGEF5 Regulates Nuclear Translocation of β-Catenin
- PMID: 29290587
- PMCID: PMC5818985
- DOI: 10.1016/j.devcel.2017.12.001
RAPGEF5 Regulates Nuclear Translocation of β-Catenin
Abstract
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.
Keywords: GTPase; RAPGEF5; Ran independent; Rap; Wnt signaling; Xenopus; congenital heart disease; heterotaxy; nuclear transport; β-catenin.
Copyright © 2017 Elsevier Inc. All rights reserved.
Figures
Comment in
-
Regulating β-Catenin Nuclear Import with the Small GTPase Rap.Dev Cell. 2018 Jan 22;44(2):135-136. doi: 10.1016/j.devcel.2018.01.004. Dev Cell. 2018. PMID: 29401416
Similar articles
-
IQGAP1 protein regulates nuclear localization of β-catenin via importin-β5 protein in Wnt signaling.J Biol Chem. 2013 Dec 20;288(51):36351-60. doi: 10.1074/jbc.M113.520528. Epub 2013 Nov 6. J Biol Chem. 2013. PMID: 24196961 Free PMC article.
-
Expression of the guanine nucleotide exchange factor, RAPGEF5, during mouse and human embryogenesis.Gene Expr Patterns. 2019 Dec;34:119057. doi: 10.1016/j.gep.2019.119057. Epub 2019 Jun 1. Gene Expr Patterns. 2019. PMID: 31163262
-
Custos controls β-catenin to regulate head development during vertebrate embryogenesis.Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13099-104. doi: 10.1073/pnas.1414437111. Epub 2014 Aug 25. Proc Natl Acad Sci U S A. 2014. PMID: 25157132 Free PMC article.
-
Targeting the β-catenin nuclear transport pathway in cancer.Semin Cancer Biol. 2014 Aug;27:20-9. doi: 10.1016/j.semcancer.2014.04.012. Epub 2014 May 9. Semin Cancer Biol. 2014. PMID: 24820952 Review.
-
Nuclear Regulation of Wnt/β-Catenin Signaling: It's a Complex Situation.Genes (Basel). 2020 Aug 4;11(8):886. doi: 10.3390/genes11080886. Genes (Basel). 2020. PMID: 32759724 Free PMC article. Review.
Cited by
-
Identification of Rare Variants in Right Ventricular Outflow Tract Obstruction Congenital Heart Disease by Whole-Exome Sequencing.Front Cardiovasc Med. 2022 Jan 24;8:811156. doi: 10.3389/fcvm.2021.811156. eCollection 2021. Front Cardiovasc Med. 2022. PMID: 35141295 Free PMC article.
-
The new identified biomarkers determine sensitivity to immune check-point blockade therapies in melanoma.Oncoimmunology. 2019 May 10;8(8):1608132. doi: 10.1080/2162402X.2019.1608132. eCollection 2019. Oncoimmunology. 2019. PMID: 31413919 Free PMC article.
-
PI3Kβ-regulated β-catenin mediates EZH2 removal from promoters controlling primed human ESC stemness and primitive streak gene expression.Stem Cell Reports. 2022 Oct 11;17(10):2239-2255. doi: 10.1016/j.stemcr.2022.09.003. Epub 2022 Sep 29. Stem Cell Reports. 2022. PMID: 36179694 Free PMC article.
-
Xenopus as a platform for discovery of genes relevant to human disease.Curr Top Dev Biol. 2021;145:277-312. doi: 10.1016/bs.ctdb.2021.03.005. Epub 2021 Apr 23. Curr Top Dev Biol. 2021. PMID: 34074532 Free PMC article. Review.
-
Cytoplasmic Parvovirus Capsids Recruit Importin Beta for Nuclear Delivery.J Virol. 2020 Jan 31;94(4):e01532-19. doi: 10.1128/JVI.01532-19. Print 2020 Jan 31. J Virol. 2020. PMID: 31748386 Free PMC article.
References
-
- Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225–230. - PubMed
-
- Bivona TG, Philips MR. Analysis of Ras and Rap activation in living cells using fluorescent Ras binding domains. Methods. 2005;37:138–145. - PubMed
-
- Blum M, Beyer T, Weber T, Vick P, Andre P, Bitzer E, Schweickert A. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn. 2009;238:1215–1225. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- S10 OD020142/OD/NIH HHS/United States
- T32 GM007223/GM/NIGMS NIH HHS/United States
- R01 HL124402/HL/NHLBI NIH HHS/United States
- PG/17/79/33313/BHF_/British Heart Foundation/United Kingdom
- R01 HD081379/HD/NICHD NIH HHS/United States
- T32 GM007205/GM/NIGMS NIH HHS/United States
- BB/1021922/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- R01 HD102186/HD/NICHD NIH HHS/United States
- S10 OD023598/OD/NIH HHS/United States
- BB/E013872/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- UL1 TR001863/TR/NCATS NIH HHS/United States
- MR/R014302/1/MRC_/Medical Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
