Microbial Modulation of Cardiovascular Disease

Nat Rev Microbiol. 2018 Mar;16(3):171-181. doi: 10.1038/nrmicro.2017.149. Epub 2018 Jan 8.

Abstract

Although diet has long been known to contribute to the pathogenesis of cardiovascular disease (CVD), research over the past decade has revealed an unexpected interplay between nutrient intake, gut microbial metabolism and the host to modify the risk of developing CVD. Microbial-associated molecular patterns are sensed by host pattern recognition receptors and have been suggested to drive CVD pathogenesis. In addition, the host microbiota produces various metabolites, such as trimethylamine-N-oxide, short-chain fatty acids and secondary bile acids, that affect CVD pathogenesis. These recent advances support the notion that targeting the interactions between the host and microorganisms may hold promise for the prevention or treatment of CVD. In this Review, we summarize our current knowledge of the gut microbial mechanisms that drive CVD, with special emphasis on therapeutic interventions, and we highlight the need to establish causal links between microbial pathways and CVD pathogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics*
  • Bacteria / metabolism*
  • Cardiovascular Diseases / microbiology*
  • Diet
  • Gastrointestinal Microbiome / physiology*
  • Humans
  • Metabolome*