Neuronal Population Activity in Spinal Motor Circuits: Greater Than the Sum of Its Parts

Front Neural Circuits. 2017 Dec 19;11:103. doi: 10.3389/fncir.2017.00103. eCollection 2017.

Abstract

The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate ± standard deviation an ill-suited description, and therefore these findings define a new arithmetic of motor networks. Focusing on the population activity behind motor pattern generation this review summarizes this advance and discusses its implications.

Keywords: CPG; ensemble; fluctuation-driven; homeostasis; lognormal; motor; population; spinal cord.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Movement / physiology*
  • Neural Pathways / cytology
  • Neural Pathways / physiology
  • Neurons / cytology
  • Neurons / physiology*
  • Spinal Cord / cytology
  • Spinal Cord / physiology*
  • Synaptic Transmission / physiology