Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient

Physiol Biochem Zool. 2018 Mar/Apr;91(2):788-796. doi: 10.1086/696157.

Abstract

Accumulation of trimethylamine N-oxide (TMAO) by deep-sea animals is proposed to protect proteins against the destabilizing effects of high hydrostatic pressure (the piezolyte hypothesis). Chondrichthyan fishes (sharks, rays, and chimaeras) provide a unique test of this hypothesis because shallow-living species have elevated TMAO levels to counteract the destabilizing effects of high urea levels accumulated for osmoregulation. Limited interspecific studies of chondrichthyans reveal that increasing depth correlates with decreased urea and increased TMAO levels, suggesting a dynamic balance between destabilizing forces on proteins (high urea, hydrostatic pressure) and TMAO to counteract these forces. Indeed, an inability to minimize urea levels or maximize TMAO levels has been proposed to explain why chondrichthyans are absent in the vast abyssal region. An unresolved question is whether the depth-related changes in chondrichthyan osmolytes are a flexible response to depth or whether phylogenetic differences in species-specific physiological set points for osmolytes account for the differences seen with depth. Sampling Arctic skates (Amblyraja hyperborea) across a 1,015-m depth gradient in the Beaufort Sea, we measured organic osmolytes in muscle using spectrophotometry and high-performance liquid chromatography. We found that the urea-to-TMAO ratio decreased linearly with depth, with tighter correlation than that seen in interspecific studies. Minor osmolytes, including betaine, sarcosine, and some α-amino acids, also declined with depth, apparently replaced (as with urea) by TMAO (a stronger piezolyte than those solutes). These data provide the first intraspecific evidence that flexible adjustments of osmolyte combinations are a key response for deep-sea living in individual chondrichthyans, supporting the piezolyte hypothesis.

Keywords: depth; hydrostatic pressure; osmolyte; piezolyte; skate; trimethylamine oxide; urea.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Arctic Regions
  • Hydrostatic Pressure
  • Oceans and Seas
  • Osmoregulation / physiology*
  • Skates, Fish / physiology*