Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles
- PMID: 29323637
- PMCID: PMC5814149
- DOI: 10.7554/eLife.31149
Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles
Abstract
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.
Keywords: autocatalytic process; biophysics; cell biology; cytoskeleton; laser ablation; microtubule nucleation; organelle size; spindle; structural biology; xenopus.
© 2018, Decker et al.
Conflict of interest statement
FD, DO, BD, JB No competing interests declared
Figures
Similar articles
-
Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy.Methods Mol Biol. 2016;1413:77-85. doi: 10.1007/978-1-4939-3542-0_6. Methods Mol Biol. 2016. PMID: 27193844 Free PMC article.
-
Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts.Mol Biol Cell. 2004 Dec;15(12):5318-28. doi: 10.1091/mbc.e04-05-0385. Epub 2004 Sep 22. Mol Biol Cell. 2004. PMID: 15385625 Free PMC article.
-
Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation.Curr Biol. 2020 Dec 21;30(24):4973-4983.e10. doi: 10.1016/j.cub.2020.10.093. Epub 2020 Nov 19. Curr Biol. 2020. PMID: 33217321
-
Mechanisms of Mitotic Spindle Assembly.Annu Rev Biochem. 2016 Jun 2;85:659-83. doi: 10.1146/annurev-biochem-060815-014528. Epub 2016 Apr 21. Annu Rev Biochem. 2016. PMID: 27145846 Free PMC article. Review.
-
Microtubule dynamics in Xenopus egg extracts.Microsc Res Tech. 1999 Mar 15;44(6):435-45. doi: 10.1002/(SICI)1097-0029(19990315)44:6<435::AID-JEMT5>3.0.CO;2-T. Microsc Res Tech. 1999. PMID: 10211677 Review.
Cited by
-
A Mechanistic View of Collective Filament Motion in Active Nematic Networks.Biophys J. 2020 Jan 21;118(2):313-324. doi: 10.1016/j.bpj.2019.11.3387. Epub 2019 Nov 28. Biophys J. 2020. PMID: 31843261 Free PMC article.
-
Self-Organization of Cellular Units.Annu Rev Cell Dev Biol. 2021 Oct 6;37:23-41. doi: 10.1146/annurev-cellbio-120319-025356. Epub 2021 Jun 29. Annu Rev Cell Dev Biol. 2021. PMID: 34186005 Free PMC article. Review.
-
Building on-chip cytoskeletal circuits via branched microtubule networks.Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2315992121. doi: 10.1073/pnas.2315992121. Epub 2024 Jan 17. Proc Natl Acad Sci U S A. 2024. PMID: 38232292 Free PMC article.
-
Ultrasensitivity of microtubule severing due to damage repair.iScience. 2024 Jan 11;27(2):108874. doi: 10.1016/j.isci.2024.108874. eCollection 2024 Feb 16. iScience. 2024. PMID: 38327774 Free PMC article.
-
Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in Xenopus laevis egg extracts.Mol Biol Cell. 2020 Dec 1;31(25):2791-2802. doi: 10.1091/mbc.E20-01-0088. Epub 2020 Oct 7. Mol Biol Cell. 2020. PMID: 33026931 Free PMC article.
References
-
- Bicout DJ. Green’s functions and first passage time distributions for dynamic instability of microtubules. Physical Review E. 1997;56:6656–6667. doi: 10.1103/PhysRevE.56.6656. - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
