Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;21(4):653-660.
doi: 10.1007/s10120-018-0793-2. Epub 2018 Jan 15.

Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

Affiliations

Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

Toshiaki Hirasawa et al. Gastric Cancer. 2018 Jul.

Abstract

Background: Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.

Methods: A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.

Results: The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.

Conclusion: The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

Keywords: Artificial intelligence; Endoscopy; Neural networks (computer); Stomach neoplasms.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Medicine (Baltimore). 2015 Jan;94(2):e384 - PubMed
    1. Gut. 2009 Mar;58(3):331-6 - PubMed
    1. Eur J Gastroenterol Hepatol. 2005 Dec;17(12):1345-9 - PubMed
    1. JAMA. 2016 Dec 13;316(22):2402-2410 - PubMed
    1. Pathol Res Pract. 1978 Dec;163(4):297-309 - PubMed

LinkOut - more resources