Dynamic Epigenetic Changes during Plant Regeneration

Trends Plant Sci. 2018 Mar;23(3):235-247. doi: 10.1016/j.tplants.2017.11.009. Epub 2018 Jan 12.

Abstract

Plants have the remarkable ability to drive cellular dedifferentiation and regeneration. Changes in epigenetic landscapes accompany the cell fate transition. Notably, modifications of chromatin structure occur primarily during callus formation via an in vitro tissue culture process and, thus, pluripotent callus cells have unique epigenetic signatures. Here, we highlight the latest progress in epigenetic regulation of callus formation in plants, which addresses fundamental questions related to cell fate changes and pluripotency establishment. Global and local modifications of chromatin structure underlie callus formation, and the combination and sequence of epigenetic modifications further shape intricate cell fate changes. This review illustrates how a series of chromatin marks change dynamically during callus formation and their biological relevance in plant regeneration.

Keywords: callus formation; cell fate change; chromatin modification; de novo organogenesis; dedifferentiation; epigenetic coordination.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Differentiation / genetics
  • Cell Differentiation / physiology
  • Chromatin / genetics*
  • Epigenesis, Genetic / genetics*
  • Gene Expression Regulation, Plant / genetics

Substances

  • Chromatin