Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome

Sci Signal. 2018 Jan 16;11(513):eaan8784. doi: 10.1126/scisignal.aan8784.

Abstract

Altered neuronal network formation and function involving dysregulated excitatory and inhibitory circuits are associated with fragile X syndrome (FXS). We examined functional maturation of the excitatory transmission system in FXS by investigating the response of FXS patient-derived neural progenitor cells to the glutamate analog (AMPA). Neural progenitors derived from induced pluripotent stem cell (iPSC) lines generated from boys with FXS had augmented intracellular Ca2+ responses to AMPA and kainate that were mediated by Ca2+-permeable AMPA receptors (CP-AMPARs) lacking the GluA2 subunit. Together with the enhanced differentiation of glutamate-responsive cells, the proportion of CP-AMPAR and N-methyl-d-aspartate (NMDA) receptor-coexpressing cells was increased in human FXS progenitors. Differentiation of cells lacking GluA2 was also increased and paralleled the increased inward rectification in neural progenitors derived from Fmr1-knockout mice (the FXS mouse model). Human FXS progenitors had increased the expression of the precursor and mature forms of miR-181a, a microRNA that represses translation of the transcript encoding GluA2. Blocking GluA2-lacking, CP-AMPARs reduced the neurite length of human iPSC-derived control progenitors and further reduced the shortened length of neurites in human FXS progenitors, supporting the contribution of CP-AMPARs to the regulation of progenitor differentiation. Furthermore, we observed reduced expression of Gria2 (the GluA2-encoding gene) in the frontal lobe of FXS mice, consistent with functional changes of AMPARs in FXS. Increased Ca2+ influx through CP-AMPARs may increase the vulnerability and affect the differentiation and migration of distinct cell populations, which may interfere with normal circuit formation in FXS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Cell Differentiation
  • Cells, Cultured
  • Female
  • Fragile X Mental Retardation Protein / physiology
  • Fragile X Syndrome / physiopathology*
  • Glutamic Acid / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Induced Pluripotent Stem Cells / pathology*
  • Male
  • Mice
  • Mice, Knockout
  • Neurons / metabolism
  • Neurons / pathology*
  • Receptors, AMPA / genetics
  • Receptors, AMPA / metabolism*

Substances

  • Fmr1 protein, mouse
  • Receptors, AMPA
  • Fragile X Mental Retardation Protein
  • Glutamic Acid
  • glutamate receptor ionotropic, AMPA 2
  • Calcium