Corona phase molecular recognition (CoPhMoRe) is a technique whereby an external, adsorbed phase around a colloidal nanoparticle is selected such that its molecular conformation or interaction recognizes a specific target analyte. In this work, we employ a high-throughput screening of a library of poly(ethylene glycol) (PEG)-conjugated lipids adsorbed onto near-infrared fluorescent single-walled carbon nanotubes to discover a corona phase selective for insulin. We find that a C16-PEG(2000 Da)-ceramide causes a 62% fluorescent intensity decrease of the (10,2) chirality nanotube in the presence of 20 μg/mL insulin. The insulin protein has no prior affinity toward the C16-PEG(2000 Da)-ceramide molecules in free solution, verified by isothermal titration calorimetry, and the interaction occurs only upon their adsorption onto the single-walled carbon nanotube scaffolds. Testing a panel of proteins originating from human blood as well as short 7 amino acid fragments of the insulin peptide rules out nonselective recognition mechanisms such as molecular weight, isoelectric point, and hydrophobicity-based detection. Interestingly, longer fragments of isolated α- and β-peptide chains of insulin are detected by the construct, albeit with lower affinity compared to that of the intact insulin protein, suggesting that the construct recognizes insulin in its native form and conformation. Finally, the insulin recognition and the quantification of its solution concentration were demonstrated both in buffer and in blood serum, showing that the CoPhMoRe construct works in this complex environment despite the presence of potential nonspecific adsorption. Our results further motivate the search for nonbiological synthetic recognition sites and open up a new path for continuous insulin monitoring in vivo with the hope of improving glycemic control in closed-loop artificial pancreas systems.
Keywords: fluorescent nanosensors; high-throughput screening; insulin; molecular recognition; single-walled carbon nanotubes.