Pulmonary arterial hypertension reduces energy efficiency of right, but not left, rat ventricular trabeculae

J Physiol. 2018 Apr 1;596(7):1153-1166. doi: 10.1113/JP275578. Epub 2018 Feb 25.

Abstract

Key points: Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance.

Abstract: Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their peak external work output was lower due to reduced extent and velocity of shortening. Despite lower peak work output, suprabasal enthalpy was unaffected, thereby rendering suprabasal efficiency lower. Crossbridge efficiency, however, was unaffected. In contrast, LV trabeculae from PAH rats maintained normal mechano-energetic performance. Pulmonary arterial hypertension reduces the suprabasal energy efficiency of hypertrophied right ventricular tissues as a consequence of the increased energy cost of Ca2+ cycling.

Keywords: Right heart failure; cardiac activation heat; cardiac efficiency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hypertension, Pulmonary / complications*
  • Male
  • Models, Cardiovascular
  • Pulmonary Artery / physiopathology*
  • Rats
  • Rats, Wistar
  • Ventricular Dysfunction, Right / etiology*
  • Ventricular Dysfunction, Right / pathology
  • Ventricular Function, Left*