A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes

Traffic. 2018 Mar;19(3):229-242. doi: 10.1111/tra.12549. Epub 2018 Feb 20.


Peroxisomes are dynamic organelles which fulfil essential roles in lipid and ROS metabolism. Peroxisome movement and positioning allows interaction with other organelles and is crucial for their cellular function. In mammalian cells, such movement is microtubule-dependent and mediated by kinesin and dynein motors. The mechanisms of motor recruitment to peroxisomes are largely unknown, as well as the role this plays in peroxisome membrane dynamics and proliferation. Here, using a combination of microscopy, live-cell imaging analysis and mathematical modelling, we identify a role for Mitochondrial Rho GTPase 1 (MIRO1) as an adaptor for microtubule-dependent peroxisome motility in mammalian cells. We show that MIRO1 is targeted to peroxisomes and alters their distribution and motility. Using a peroxisome-targeted MIRO1 fusion protein, we demonstrate that MIRO1-mediated pulling forces contribute to peroxisome membrane elongation and proliferation in cellular models of peroxisome disease. Our findings reveal a molecular mechanism for establishing peroxisome-motor protein associations in mammalian cells and provide new insights into peroxisome membrane dynamics in health and disease.

Keywords: MIRO1; mathematical modelling; membrane protrusion; microtubule; organelle motility; peroxisome; proliferation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COS Cells
  • Cells, Cultured
  • Chlorocebus aethiops
  • Humans
  • Intracellular Membranes / metabolism*
  • Intracellular Membranes / ultrastructure
  • Mice
  • Microtubules / metabolism
  • Organelle Biogenesis
  • Peroxisomes / metabolism*
  • Peroxisomes / ultrastructure
  • Protein Transport
  • rho GTP-Binding Proteins / genetics
  • rho GTP-Binding Proteins / metabolism*


  • Miro-1 protein, mouse
  • rho GTP-Binding Proteins