Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD
- PMID: 29380049
- PMCID: PMC6385858
- DOI: 10.1007/s00401-017-1798-3
Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Neurodegeneration may occur via transcription of the repeats into inherently toxic repetitive sense and antisense RNA species, or via repeat-associated non-ATG initiated translation (RANT) of sense and antisense RNA into toxic dipeptide repeat proteins. We have previously demonstrated that regular interspersion of repeat RNA with stop codons prevents RANT (RNA-only models), allowing us to study the role of repeat RNA in isolation. Here we have created novel RNA-only Drosophila models, including the first models of antisense repeat toxicity, and flies expressing extremely large repeats, within the range observed in patients. We generated flies expressing ~ 100 repeat sense or antisense RNA either as part of a processed polyadenylated transcript or intronic sequence. We additionally created Drosophila expressing > 1000 RNA-only repeats in the sense direction. When expressed in adult Drosophila neurons polyadenylated repeat RNA is largely cytoplasmic in localisation, whilst intronic repeat RNA forms intranuclear RNA foci, as does > 1000 repeat RNA, thus allowing us to investigate both nuclear and cytoplasmic RNA toxicity. We confirmed that these RNA foci are capable of sequestering endogenous Drosophila RNA-binding proteins, and that the production of dipeptide proteins (poly-glycine-proline, and poly-glycine-arginine) is suppressed in our models. We find that neither cytoplasmic nor nuclear sense or antisense RNA are toxic when expressed in adult Drosophila neurons, suggesting they have a limited role in disease pathogenesis.
Keywords: ALS; C9orf72; Drosophila; FTD; Repeat expansion.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures
Similar articles
-
RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3.Acta Neuropathol Commun. 2020 Oct 31;8(1):177. doi: 10.1186/s40478-020-01060-y. Acta Neuropathol Commun. 2020. PMID: 33129345 Free PMC article.
-
RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia.Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E4968-77. doi: 10.1073/pnas.1315438110. Epub 2013 Nov 18. Proc Natl Acad Sci U S A. 2013. PMID: 24248382 Free PMC article. Clinical Trial.
-
Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS.Neuron. 2015 Sep 23;87(6):1207-1214. doi: 10.1016/j.neuron.2015.09.015. Neuron. 2015. PMID: 26402604 Free PMC article.
-
Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.Neurosci Lett. 2017 Jan 1;636:16-26. doi: 10.1016/j.neulet.2016.09.007. Epub 2016 Sep 13. Neurosci Lett. 2017. PMID: 27619540 Free PMC article. Review.
-
Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models.Trends Neurosci. 2018 Jul;41(7):457-469. doi: 10.1016/j.tins.2018.04.002. Epub 2018 May 2. Trends Neurosci. 2018. PMID: 29729808 Free PMC article. Review.
Cited by
-
Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila.Elife. 2021 Mar 19;10:e58565. doi: 10.7554/eLife.58565. Elife. 2021. PMID: 33739284 Free PMC article.
-
Toxicity of C9orf72-associated dipeptide repeat peptides is modified by commonly used protein tags.Life Sci Alliance. 2023 Jun 12;6(9):e202201739. doi: 10.26508/lsa.202201739. Print 2023 Sep. Life Sci Alliance. 2023. PMID: 37308278 Free PMC article.
-
Neuronal Transcriptome from C9orf72 Repeat Expanded Human Tissue is Associated with Loss of C9orf72 Function.Free Neuropathol. 2020;1:23. Epub 2020 Aug 21. Free Neuropathol. 2020. PMID: 32905541 Free PMC article.
-
The exocyst subunit EXOC2 regulates the toxicity of expanded GGGGCC repeats in C9ORF72-ALS/FTD.Cell Rep. 2024 Jul 23;43(7):114375. doi: 10.1016/j.celrep.2024.114375. Epub 2024 Jun 26. Cell Rep. 2024. PMID: 38935506 Free PMC article.
-
Long non coding RNAs and ALS: Still much to do.Noncoding RNA Res. 2018 Nov 15;3(4):226-231. doi: 10.1016/j.ncrna.2018.11.004. eCollection 2018 Dec. Noncoding RNA Res. 2018. PMID: 30533570 Free PMC article. Review.
References
-
- Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet. 2013;92:345–353. doi: 10.1016/j.ajhg.2013.01.011. - DOI - PMC - PubMed
-
- van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol. 2013;12:978–988. doi: 10.1016/S1474-4422(13)70210-2. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
