Wnt Signaling in Hematological Malignancies

Prog Mol Biol Transl Sci. 2018 Jan;153:321-341. doi: 10.1016/bs.pmbts.2017.11.002. Epub 2017 Dec 29.


Leukemia and lymphoma are a wide encompassing term for a diverse set of blood malignancies that affect people of all ages and result in approximately 23,000 deaths in the United States per year (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Hematopoietic stem cells (HSCs) are tissue-specific stem cells at the apex of the hierarchy that gives rise to all of the terminally differentiated blood cells, through progressively restricted progenitor populations, a process that is known to be Wnt-responsive. In particular, the progenitor populations are subject to uncontrolled expansion during oncogenic processes, namely the common myeloid progenitor and common lymphoid progenitor, as well as the myeloblast and lymphoblast. Unregulated growth of these cell-types leads to mainly three types of blood cancers (i.e., leukemia, lymphoma, and myeloma), which frequently exhibit deregulation of the Wnt signaling pathway. Generally, leukemia is caused by the expansion of myeloid progenitors, leading to an overproduction of white blood cells; as such, patients are unable to make sufficient numbers of red blood cells and platelets. Likewise, an overproduction of lymphocytes leads to clogging of the lymph system and impairment of the immune system in lymphomas. Finally, cancer of the plasma cells in the blood is called myeloma, which also leads to immune system failure. Within each of these three types of blood cancers, there are multiple subtypes, usually characterized by their timeline of onset and their cell type of origin. Of these, 85% of leukemias are encompassed by the four most common diseases, that is, acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL); AML accounts for the majority of leukemia-related deaths (Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.). Through understanding how HSCs are normally developed and maintained, we can understand how the normal functions of these pathways are disrupted during blood cancer progression; the Wnt pathway is important in regulation of both normal and malignant hematopoiesis. In this chapter, we will discuss the role of Wnt signaling in normal and aberrant hematopoiesis. Our understanding the relationship between Wnt and HSCs will provide novel insights into therapeutic targets.

Keywords: Wnt; hematopoiesis; hematopoietic stem cell; leukemia; lymphoma; myeloma.

Publication types

  • Review

MeSH terms

  • Animals
  • Hematologic Neoplasms / metabolism
  • Hematologic Neoplasms / pathology*
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism
  • Humans
  • Wnt Proteins / metabolism*
  • Wnt Signaling Pathway*


  • Wnt Proteins