Tread carefully: A functional variant in the human NADPH oxidase 4 (NOX4) is not disease causing

Mol Genet Metab. 2018 Mar;123(3):382-387. doi: 10.1016/j.ymgme.2018.01.007. Epub 2018 Feb 2.

Abstract

In this study, we report a paediatric patient with a lethal phenotype of respiratory distress, failure to thrive, pancreatic insufficiency, liver dysfunction, hypertrophic cardiomyopathy, bone marrow suppression, humoral and cellular immune deficiency. To identify the genetic basis of this unusual clinical phenotype and potentially make available the option of future prenatal testing, whole exome sequencing (WES) was used followed by functional studies in a bid to confirm pathogenicity. The WES we identified a homozygous novel variant, AK298328; c.9_10insGAG; p.[Glu3dup], in NOX4 in the proband, and parental heterozygosity for the variant (confirmed by Sanger sequencing). NADPH Oxidase 4 NOX4 (OMIM 605261) encodes an enzyme that functions as the catalytic subunit of the NADPH oxidase complex. NOX4 acts as an oxygen sensor, catalysing the reduction of molecular oxygen, mainly to hydrogen peroxide (H2O2). However, although, our functional data including 60% reduction in NOX4 protein levels and a 75% reduction in the production of H2O2 in patient fibroblast extracts compared to controls was initially considered to be the likely cause of the phenotype in our patient, the potential contribution of the NOX4 variant as the primary cause of the disease was clearly excluded based on following pieces of evidence. First, Sanger sequencing of other family members revealed that two of the grandparents were also homozygous for the NOX4 variant, one of who has fibromuscular dysplasia. Second, re-evaluation of more recent variant databases revealed a high allele frequency for this variant. Our case highlights the need to re-interrogate bioinformatics resources as they are constantly evolving, and is reminiscent of the short-chain acyl-CoA dehydrogenase deficiency (SCADD) story, where a functional defect in fatty acid oxidation has doubtful clinical ramifications.

Keywords: H(2)O(2); NO4; Whole exome sequencing.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agenesis of Corpus Callosum / diagnosis
  • Agenesis of Corpus Callosum / genetics
  • Cardiomyopathy, Hypertrophic / diagnosis
  • Cardiomyopathy, Hypertrophic / genetics
  • Cataract / diagnosis
  • Cataract / genetics
  • Computational Biology
  • Exocrine Pancreatic Insufficiency / diagnosis
  • Exocrine Pancreatic Insufficiency / genetics
  • Exome Sequencing
  • Failure to Thrive / diagnosis
  • Failure to Thrive / genetics
  • Fatal Outcome
  • Female
  • Heterozygote
  • Homozygote*
  • Humans
  • Infant
  • Infant, Newborn
  • Infant, Premature
  • NADPH Oxidase 4 / genetics*
  • Phenotype*
  • Respiratory Distress Syndrome, Newborn / diagnosis
  • Respiratory Distress Syndrome, Newborn / genetics

Substances

  • NADPH Oxidase 4
  • NOX4 protein, human

Supplementary concepts

  • Absent corpus callosum cataract immunodeficiency
  • Respiratory Distress Syndrome In Premature Infants