Cognitive-motivational interactions: beyond boxes-and-arrows models of the mind-brain

Motiv Sci. 2017 Sep;3(3):287-303. doi: 10.1037/mot0000074.


How do motivation and cognitive control interact in brain and behavior? The past decade has witnessed a steady growth in studies investigating both the behavioral and the brain basis of these interactions. In this paper, I describe such interactions in the context of the dual completion model, which proposes that motivational significance influences both perceptual and executive competition. Embracing a research agenda that attempts to understand cognition-motivation interactions highlights considerable challenges faced by investigators. For example, even the standard language utilized, with terms such as "perception," "attention," "cognition," and "motivation," encourages a modular-like conceptualization of the underlying processes and mechanisms. I propose that large-scale interactions involving both task-related and valuation-related networks help understand how motivation shapes executive function. I argue that, ultimately, the mind and brain sciences need to move beyond "boxes and arrows" and fully embrace the richness and complexity of the interactions between motivation and cognition. In the last 10 years, the study in humans of the interactions of motivation with perception and cognition has grown at a fast pace. The growth has included behavioral studies characterizing the processes involved, and neuroimaging studies investigating the regions and circuits underlying the behaviors in question. This literature acknowledges the fact that perception and cognition do not happen in a vacuum but are, instead, situated in contexts that feature value. Although this assertion is uncontroversial, the mind and brain sciences have studied perception and cognition for many decades by largely extricating value from them. Fortunately, this state of affairs has now changed and the field has a newfound vigor in attempting to understand the impact of motivation on these mental functions.