Computational Nosology and Precision Psychiatry

Comput Psychiatr. 2017;1:2-23. doi: 10.1162/CPSY_a_00001. Epub 2017 Sep 8.


This article provides an illustrative treatment of psychiatric morbidity that offers an alternative to the standard nosological model in psychiatry. It considers what would happen if we treated diagnostic categories not as causes of signs and symptoms, but as diagnostic consequences of psychopathology and pathophysiology. This reformulation (of the standard nosological model) opens the door to a more natural description of how patients present-and of their likely responses to therapeutic interventions. In brief, we describe a model that generates symptoms, signs, and diagnostic outcomes from latent psychopathological states. In turn, psychopathology is caused by pathophysiological processes that are perturbed by (etiological) causes such as predisposing factors, life events, and therapeutic interventions. The key advantages of this nosological formulation include (i) the formal integration of diagnostic (e.g., DSM) categories and latent psychopathological constructs (e.g., the dimensions of the Research Domain Criteria); (ii) the provision of a hypothesis or model space that accommodates formal, evidence-based hypothesis testing (using Bayesian model comparison); and (iii) the ability to predict therapeutic responses (using a posterior predictive density), as in precision medicine. These and other advantages are largely promissory at present: The purpose of this article is to show what might be possible, through the use of idealized simulations.

Keywords: Bayesian; dynamics; model selection; nosology; pathophysiology; psychiatry; psychopathology; therapy.