Radiomic features analysis in computed tomography images of lung nodule classification

PLoS One. 2018 Feb 5;13(2):e0192002. doi: 10.1371/journal.pone.0192002. eCollection 2018.


Purpose: Radiomics, which extract large amount of quantification image features from diagnostic medical images had been widely used for prognostication, treatment response prediction and cancer detection. The treatment options for lung nodules depend on their diagnosis, benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy. Recently, radiomics features, a non-invasive method based on clinical images, have shown high potential in lesion classification, treatment outcome prediction.

Methods: Lung nodule classification using radiomics based on Computed Tomography (CT) image data was investigated and a 4-feature signature was introduced for lung nodule classification. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics feature extraction was performed on non-enhanced CT images with contours which were delineated by an experienced radiation oncologist.

Result: Among the 750 image features in each case, 76 features were found to have significant differences between benign and malignant lesions. A radiomics signature was composed of the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.

Conclusion: The classification signature based on radiomics features demonstrated very good accuracy and high potential in clinical application.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Biopsy
  • Female
  • Humans
  • Lung Neoplasms / diagnostic imaging*
  • Lung Neoplasms / pathology
  • Male
  • Middle Aged
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods*
  • Young Adult

Grant support

This study was financially supported by Ministry of Science and Technology, Taiwan (MOST 106-2221-E-039-007; URLs:, Chang Bing Show Chwan Memorial Hospital (RD106070; URLs:, and China Medical University Hospital (DMR-107-058). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.