Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 28;10(8):6849-6857.
doi: 10.1021/acsami.7b16059. Epub 2018 Feb 15.

3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy

Affiliations

3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy

Jun Yin et al. ACS Appl Mater Interfaces. .

Abstract

Methacrylated gelatin (GelMA) has been widely used as a tissue-engineered scaffold material, but only low-concentration GelMA hydrogels were found to be promising cell-laden bioinks with excellent cell viability. In this work, we reported a strategy for precise deposition of 5% (w/v) cell-laden GelMA bioinks into controlled microarchitectures with high cell viability using extrusion-based three-dimensional (3D) bioprinting. By adding gelatin into GelMA bioinks, a two-step cross-linking combining the rapid and reversible thermo-cross-linking of gelatin with irreversible photo-cross-linking of GelMA was achieved. The GelMA/gelatin bioinks showed significant advantages in processability because the tunable rheology and the rapid thermo-cross-linking of bioinks improved the shape fidelity after bioprinting. Here, the rheology, mechanical properties, and swelling of GelMA/gelatin bioinks with different concentration ratios were carefully characterized to obtain the optimized bioprinting setup. We successfully printed the 5% (w/v) GelMA with 8% (w/v) gelatin into 3D structures, which had the similar geometrical resolution as that of the structures printed by 30% (w/v) GelMA bioinks. Moreover, the cell viability of 5/8% (w/v) GelMA/gelatin bioinks was demonstrated by in vitro culture and cell printing of bone marrow stem cells (BMSCs). Larger BMSC spreading area was found on 5/8% (w/v) GelMA/gelatin scaffolds, and the BMSC viability after the printing of 5/8% (w/v) GelMA/gelatin cell-laden bioinks was more than 90%, which was very close to the viability of printing pure 5% (w/v) GelMA cell-laden bioinks. Therefore, this printing strategy of GelMA/gelatin bioinks may extensively extend the applications of GelMA hydrogels for tissue engineering, organ printing, or drug delivery.

Keywords: 3D bioprinting; bioink; gelatin; processability; two-step cross-linking.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources