Dynamic energy budget models in ecological risk assessment: From principles to applications

Sci Total Environ. 2018 Jul 1:628-629:249-260. doi: 10.1016/j.scitotenv.2018.02.058. Epub 2018 Feb 13.

Abstract

In ecological risk assessment of chemicals, hazard identification and hazard characterisation are most often based on ecotoxicological tests and expressed as summary statistics such as No Observed Effect Concentrations or Lethal Concentration values and No Effect Concentrations. Considerable research is currently ongoing to further improve methodologies to take into account toxico kinetic aspects in toxicological assessments, extrapolations of toxic effects observed on individuals to population effects and combined effects of multiple chemicals effects. In this context, the principles of the Dynamic Energy Budget (DEB), namely the conserved allocation of energy to different life-supporting processes in a wide variety of different species, have been applied successfully to the development of a number of DEB models. DEB models allow the incorporation of effects on growth, reproduction and survival within one consistent framework. This review aims to discuss the principles of the DEB theory together with available DEB models, databases available and applications in ecological risk assessment of chemicals for a wide range of species and taxa. Future perspectives are also discussed with particular emphasis on ongoing research efforts to develop DEB models as open source tools to further support the research and regulatory community to integrate quantitative biology in ecotoxicological risk assessment.

Keywords: Add-my-Pet; Dynamic energy budget; Ecological risk assessment; Modelling; Population dynamics.

Publication types

  • Review