Photobacterium damselae subsp. damselae, a generalist pathogen with unique virulence factors and high genetic diversity

J Bacteriol. 2018 Feb 12;200(15):e00002-18. doi: 10.1128/JB.00002-18. Online ahead of print.

Abstract

Photobacterium damselae subsp. damselae causes vibriosis in a variety of marine animals, including fish species of importance in aquaculture. It also may cause wound infections in humans that can progress into a fatal outcome. Two major virulence factors are encoded within the large conjugative plasmid pPHDD1: the phospholipase-D damselysin (Dly) and the pore-forming toxin Phobalysin P (PhlyP). The two toxins exert hemolytic and cytolytic activity in a synergistic manner. Albeit PhlyP has close homologues in many Vibrio species, it has unique features that differentiate it from related toxins. Dly phospholipase constitutes a singular trait of P. damselae subsp. damselae among the Vibrionaceae, although related toxins are found in members of the Aeromonadaceae Fish farm outbreaks can also be caused by plasmidless strains. Such observation led to the characterization of two ubiquitous, chromosome-encoded toxins with lesser cytolytic activity: the pore forming-toxin Phobalysin C (PhlyC) and the phospholipase-hemolysin PlpV. Special attention deserves the high genetic diversity of this pathogen, with a number of strain-specific features including the cell envelope polysaccharide synthesis clusters. Fish outbreaks are likely caused by multiclonal populations which contain both plasmidless and pPHDD1-harbouring isolates, and not by well-adapted clonal complexes. Still, among such a genetic heterogeneity, it is feasible to identify conserved weak points in the biology of this bacterium: the two-component regulatory system RstAB (CarSR) was found to be necessary for maximal production of virulence factors and its inactivation severely impaired virulence.