PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca2+ channels with full-length CaV1.2 C-terminus

Pflugers Arch. 2018 Jun;470(6):909-921. doi: 10.1007/s00424-018-2114-3. Epub 2018 Feb 13.

Abstract

In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a CaV1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased CaV1.2 channel currents without altering CaV1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of CaV1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length CaV1.2 (CaV1.2FL) is expressed much more abundantly than truncated CaV1.2. In a heterologous expression system, c-Src activated CaV1.2 channels composed of CaV1.2FL but not truncated CaV1.2 (CaV1.2Δ1763) or CaV1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of CaV1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with CaV1.2Δ1763, c-Src could more efficiently bind to and phosphorylate CaV1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational CaV1.2 modifications.

Keywords: CaV1.2 channels; Platelet-derived growth factor; Vascular smooth muscle cells; c-Src.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atherosclerosis / metabolism*
  • Atherosclerosis / pathology
  • Atherosclerosis / physiopathology
  • Calcium Channels, L-Type / chemistry
  • Calcium Channels, L-Type / metabolism*
  • Cells, Cultured
  • HEK293 Cells
  • Humans
  • Male
  • Muscle, Smooth, Vascular / metabolism*
  • Muscle, Smooth, Vascular / pathology
  • Muscle, Smooth, Vascular / physiopathology
  • Myocytes, Smooth Muscle / drug effects
  • Myocytes, Smooth Muscle / metabolism*
  • Myocytes, Smooth Muscle / pathology
  • Platelet-Derived Growth Factor / pharmacology
  • Protein Domains
  • Rats
  • Rats, Sprague-Dawley
  • Transendothelial and Transepithelial Migration*
  • src-Family Kinases / metabolism

Substances

  • Calcium Channels, L-Type
  • Platelet-Derived Growth Factor
  • src-Family Kinases