Monoclonal antibodies (mAbs) are powerful tools useful for both fundamental research and in biomedicine. Their high specificity is indispensable when the antibody needs to distinguish between highly related structures (e.g., a normal protein and a mutated version thereof). The current way of generating such discriminative mAbs involves extensive screening of multiple Ab-producing B cells, which is both costly and time consuming. We propose here a rapid and cost-effective method for the generation of discriminative, fully human mAbs starting from human blood circulating B lymphocytes. The originality of this strategy is due to the selection of specific antigen binding B cells combined with the counter-selection of all other cells, using readily available Peripheral Blood Mononuclear Cells (PBMC). Once specific B cells are isolated, cDNA (complementary deoxyribonucleic acid) sequences coding for the corresponding mAb are obtained using single cell Reverse Transcription-Polymerase Chain Reaction (RT-PCR) technology and subsequently expressed in human cells. Within as little as 1 month, it is possible to produce milligrams of highly discriminative human mAbs directed against virtually any desired antigen naturally detected by the B cell repertoire.