Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 27;12(3):2539-2545.
doi: 10.1021/acsnano.7b08344. Epub 2018 Feb 16.

Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning

Affiliations

Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning

Zhihua Lin et al. ACS Nano. .

Abstract

We report a magnetically actuated peanut-shaped hematite colloid motor that can not only move in a rolling or wobbling mode in fluids but also perform single cell manipulation and patterning in a noncontact way. The peanut motor in a rolling mode can reach a maximal velocity of 10.6 μm s-1 under a rotating magnetic field of 130 Hz and 6.3 mT and achieve a more precisely controllable motion in predefined tracks. While in a wobbling mode, the motor reaches a maximal velocity of 14.5 μm s-1 under a conical rotating magnetic field of 80 Hz and 6.3 mT and can climb over steep slopes to adapt the motor for more complex environments. The fluid flow simulation results reveal that the difference between two movement modes mostly comes from the distribution discrepancy of the flow fields near the motors. Through the integration of the rolling and wobbling movement, these peanut motors can autonomously transport and release cells to a predefined site and thus form complex cell patterns without a physical contact. Such magnetically actuated peanut colloid motors afford a biofriendly technique for manipulation and patterning of cells, cell measurements, and intracellular communication investigations.

Keywords: cell manipulation; cell patterning; colloid motor; magnetic actuation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources