Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning
- PMID: 29443501
- DOI: 10.1021/acsnano.7b08344
Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning
Abstract
We report a magnetically actuated peanut-shaped hematite colloid motor that can not only move in a rolling or wobbling mode in fluids but also perform single cell manipulation and patterning in a noncontact way. The peanut motor in a rolling mode can reach a maximal velocity of 10.6 μm s-1 under a rotating magnetic field of 130 Hz and 6.3 mT and achieve a more precisely controllable motion in predefined tracks. While in a wobbling mode, the motor reaches a maximal velocity of 14.5 μm s-1 under a conical rotating magnetic field of 80 Hz and 6.3 mT and can climb over steep slopes to adapt the motor for more complex environments. The fluid flow simulation results reveal that the difference between two movement modes mostly comes from the distribution discrepancy of the flow fields near the motors. Through the integration of the rolling and wobbling movement, these peanut motors can autonomously transport and release cells to a predefined site and thus form complex cell patterns without a physical contact. Such magnetically actuated peanut colloid motors afford a biofriendly technique for manipulation and patterning of cells, cell measurements, and intracellular communication investigations.
Keywords: cell manipulation; cell patterning; colloid motor; magnetic actuation.
Similar articles
-
Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.J Microencapsul. 2016 Dec;33(8):712-717. doi: 10.1080/02652048.2016.1234514. Epub 2016 Nov 2. J Microencapsul. 2016. PMID: 27632892
-
Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022505. doi: 10.1103/PhysRevE.89.022505. Epub 2014 Feb 13. Phys Rev E Stat Nonlin Soft Matter Phys. 2014. PMID: 25353487
-
Core-shell magnetoelectric nanorobot - A remotely controlled probe for targeted cell manipulation.Sci Rep. 2018 Jan 29;8(1):1755. doi: 10.1038/s41598-018-20191-w. Sci Rep. 2018. PMID: 29379076 Free PMC article.
-
Magnetic Measurement and Stimulation of Cellular and Intracellular Structures.ACS Nano. 2020 Apr 28;14(4):3805-3821. doi: 10.1021/acsnano.0c00959. Epub 2020 Apr 6. ACS Nano. 2020. PMID: 32223274 Review.
-
Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies.Front Cell Dev Biol. 2020 Jun 30;8:526. doi: 10.3389/fcell.2020.00526. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32695782 Free PMC article. Review.
Cited by
-
Multimode microdimer robot for crossing tissue morphological barrier.iScience. 2023 Oct 28;26(11):108320. doi: 10.1016/j.isci.2023.108320. eCollection 2023 Nov 17. iScience. 2023. PMID: 38026188 Free PMC article.
-
Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification.Nat Commun. 2023 Nov 1;14(1):6969. doi: 10.1038/s41467-023-42674-9. Nat Commun. 2023. PMID: 37914692 Free PMC article.
-
Acoustic Streaming-Induced Multimodal Locomotion of Bubble-Based Microrobots.Adv Sci (Weinh). 2023 Dec;10(35):e2304233. doi: 10.1002/advs.202304233. Epub 2023 Oct 26. Adv Sci (Weinh). 2023. PMID: 37884484 Free PMC article.
-
Magnetically locked Janus particle clusters with orientation-dependent motion in AC electric fields.Nanoscale. 2023 Oct 20;15(40):16268-16276. doi: 10.1039/d3nr03744d. Nanoscale. 2023. PMID: 37800377
-
Cellular Manipulation Using Rolling Microrobots.Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022:10.1109/marss55884.2022.9870486. doi: 10.1109/marss55884.2022.9870486. Epub 2022 Sep 2. Int Conf Manip Autom Robot Small Scales. 2022. PMID: 37663239 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
