Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine

J Chem Neuroanat. 2019 Jan;95:81-88. doi: 10.1016/j.jchemneu.2018.02.002. Epub 2018 Feb 12.

Abstract

Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized.

Keywords: Cell-replacement therapy; Disease modeling; Eye; Induced pluripotent stem cells; Retinal degenerative disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Transplantation
  • Humans
  • Induced Pluripotent Stem Cells*
  • Models, Biological*
  • Regenerative Medicine / methods*
  • Retina*
  • Retinal Degeneration*