Gene drives to fight malaria: current state and future directions
- PMID: 29457956
- PMCID: PMC6066861
- DOI: 10.1080/20477724.2018.1438880
Gene drives to fight malaria: current state and future directions
Abstract
Self-propagating gene drive technologies have a number of desirable characteristics that warrant their development for the control of insect pest and vector populations, such as the malaria-transmitting mosquitoes. Theoretically easy to deploy and self-sustaining, these tools may be used to generate cost-effective interventions that benefit society without obvious bias related to wealth, age or education. Their species-specific design offers the potential to reduce environmental risks and aim to be compatible and complementary with other control strategies, potentially expediting the elimination and eradication of malaria. A number of strategies have been proposed for gene-drive based control of the malaria mosquito and recent demonstrations have shown proof-of-principle in the laboratory. Though several technical, ethical and regulatory challenges remain, none appear insurmountable if research continues in a step-wise and open manner.
Keywords: CRISPR; Gene drive; genetic vector control; genome editing; malaria; mosquito.
Figures
Comment in
-
Gene drives may be the next step towards sustainable control of malaria.Pathog Glob Health. 2017 Dec;111(8):399-400. doi: 10.1080/20477724.2017.1453587. Epub 2018 Mar 23. Pathog Glob Health. 2017. PMID: 29566584 Free PMC article. No abstract available.
Similar articles
-
Population modification of Anopheline species to control malaria transmission.Pathog Glob Health. 2017 Dec;111(8):424-435. doi: 10.1080/20477724.2018.1427192. Epub 2018 Feb 1. Pathog Glob Health. 2017. PMID: 29385893 Free PMC article. Review.
-
Knowledge engagement in gene drive research for malaria control.PLoS Negl Trop Dis. 2019 Apr 25;13(4):e0007233. doi: 10.1371/journal.pntd.0007233. eCollection 2019 Apr. PLoS Negl Trop Dis. 2019. PMID: 31022169 Free PMC article. No abstract available.
-
Control of malaria-transmitting mosquitoes using gene drives.Philos Trans R Soc Lond B Biol Sci. 2021 Feb 15;376(1818):20190803. doi: 10.1098/rstb.2019.0803. Epub 2020 Dec 28. Philos Trans R Soc Lond B Biol Sci. 2021. PMID: 33357060 Free PMC article. Review.
-
Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.BMC Biol. 2020 Aug 11;18(1):98. doi: 10.1186/s12915-020-00834-z. BMC Biol. 2020. PMID: 32782000 Free PMC article.
-
Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.Elife. 2021 Apr 13;10:e58791. doi: 10.7554/eLife.58791. Elife. 2021. PMID: 33845943 Free PMC article.
Cited by
-
Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey.Malar J. 2023 Dec 21;22(1):384. doi: 10.1186/s12936-023-04787-w. Malar J. 2023. PMID: 38129897 Free PMC article.
-
Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria.Malar J. 2023 Aug 14;22(1):234. doi: 10.1186/s12936-023-04665-5. Malar J. 2023. PMID: 37580703 Free PMC article.
-
Introgression of a synthetic sex ratio distortion transgene into different genetic backgrounds of Anopheles coluzzii.Insect Mol Biol. 2023 Feb;32(1):56-68. doi: 10.1111/imb.12813. Epub 2022 Oct 31. Insect Mol Biol. 2023. PMID: 36251429 Free PMC article.
-
Climate adaptation impacting parasitic infection.Trop Parasitol. 2022 Jan-Jun;12(1):3-7. doi: 10.4103/tp.tp_32_22. Epub 2022 Jun 26. Trop Parasitol. 2022. PMID: 35923263 Free PMC article.
-
Leveraging mathematical models of disease dynamics and machine learning to improve development of novel malaria interventions.Infect Dis Poverty. 2022 Jun 4;11(1):61. doi: 10.1186/s40249-022-00981-1. Infect Dis Poverty. 2022. PMID: 35659301 Free PMC article.
References
-
- WHO | Eliminating malaria [Internet]. WHO . [cited 2018 Feb 2]. Available from: http://www.who.int/malaria/publications/atoz/eliminating-malaria/en/.
-
- WHO | Global vector control response [Internet]. WHO. [cited 2017 Sep 29]. Available from: http://www.who.int/malaria/areas/vector_control/global-vector-control-re....
-
- WHO | World malaria report 2017 [Internet]. WHO [cited 2017 Dec 3]. Available from: http://www.who.int/malaria/publications/world-malaria-report-2017/report....
-
- WHO | A global brief on vector-borne diseases [Internet]. WHO. [cited 2017 Sep 29]. Available from: http://www.who.int/campaigns/world-health-day/2014/global-brief/en/.
-
- Knipling EF. Sterile-male method of population control: successful with some insects, the method may also be effective when applied to other noxious animals. Science. 1959;130:902–904. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
