Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 1;34(13):2185-2194.
doi: 10.1093/bioinformatics/bty085.

The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier

Affiliations

The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier

Zhen Cao et al. Bioinformatics. .

Abstract

Motivation: The long non-coding RNA (lncRNA) studies have been hot topics in the field of RNA biology. Recent studies have shown that their subcellular localizations carry important information for understanding their complex biological functions. Considering the costly and time-consuming experiments for identifying subcellular localization of lncRNAs, computational methods are urgently desired. However, to the best of our knowledge, there are no computational tools for predicting the lncRNA subcellular locations to date.

Results: In this study, we report an ensemble classifier-based predictor, lncLocator, for predicting the lncRNA subcellular localizations. To fully exploit lncRNA sequence information, we adopt both k-mer features and high-level abstraction features generated by unsupervised deep models, and construct four classifiers by feeding these two types of features to support vector machine (SVM) and random forest (RF), respectively. Then we use a stacked ensemble strategy to combine the four classifiers and get the final prediction results. The current lncLocator can predict five subcellular localizations of lncRNAs, including cytoplasm, nucleus, cytosol, ribosome and exosome, and yield an overall accuracy of 0.59 on the constructed benchmark dataset.

Availability and implementation: The lncLocator is available at www.csbio.sjtu.edu.cn/bioinf/lncLocator.

Supplementary information: Supplementary data are available at Bioinformatics online.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources