Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories

Anal Bioanal Chem. 2018 Apr;410(10):2619-2628. doi: 10.1007/s00216-018-0935-8. Epub 2018 Feb 22.


Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes-the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)-are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed. Graphical abstract Onsite calibration with transportable generation system with similar performances to primary laboratory devices.

Keywords: Biochemical laboratory; Chemical laboratory; Dynamic generation; GC calibration; Metrological traceability; Reference VOC gas mixtures.