Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;53(7):397-402.
doi: 10.1097/RLI.0000000000000455.

Magnetization Transfer Ratio in Peripheral Nerve Tissue: Does It Depend on Age or Location?

Affiliations

Magnetization Transfer Ratio in Peripheral Nerve Tissue: Does It Depend on Age or Location?

Jennifer Kollmer et al. Invest Radiol. 2018 Jul.

Abstract

Background and purpose: Magnetization transfer contrast imaging provides indirect information on the concentration of "bound" water protons and their interactions with "free" water molecules. The purpose of this study is to analyze location- and age-dependent changes in the magnetization transfer ratio (MTR) of lower extremity nerves.

Materials and methods: Ten younger (20-32 years) and 5 older (50-63 years) healthy volunteers underwent magnetization transfer contrast imaging at 3 Tesla Two 3-dimensional gradient echo sequences with and without an off-resonance saturation pulse (repetition time: 58 milliseconds; echo time: 2.46 milliseconds; band width: 530 Hz/Px; flip angle: α = 7°) were acquired at 3 different locations covering the proximal thigh to the distal lower leg in the group of younger volunteers and at 2 different locations covering the proximal to distal thigh in the group of older volunteers. Sciatic and tibial nerve regions of interest (ROIs) were manually drawn and additional ROIs were placed in predetermined muscles. Magnetization transfer ratios were extracted from respective ROIs and calculated for each individual and location.

Results: In young volunteers, mean values of nerve and muscle MTR were not different between the proximal thigh (nerve: 20.34 ± 0.91; muscle: 31.71 ± 0.29), distal thigh (nerve: 19.90 ± 0.98; P = 0.76; muscle: 31.53 ± 0.69; P = 0.87), and lower leg (nerve: 20.82 ± 1.07; P = 0.73; muscle: 32.44 ± 1.11; P = 0.51). An age-dependent decrease of sciatic nerve MTR was observed in the group of older volunteers (16.95 ± 1.2) compared with the group of younger volunteers (20.12 ± 0.65; P = 0.019). Differences in muscle MTR were not significant between older (31.01 ± 0.49) and younger (31.62 ± 0.37; P = 0.20) volunteers.

Conclusion: The MTR of lower extremity nerves shows no proximal-to-distal gradient in young healthy volunteers but decreases with age. For future studies using MTR in peripheral nerve disorders, these findings suggest that referencing magnetization transfer contrast values in terms of age, but not anatomical nerve location is required.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources