Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance

J Colloid Interface Sci. 2018 May 15:518:242-251. doi: 10.1016/j.jcis.2018.02.012. Epub 2018 Feb 7.

Abstract

Bi2MoO6/reduced graphene oxide (Bi2MoO6/rGO) composites were fabricated by a facile one-pot hydrothermal approach, in which Bi2MoO6 nanosheets and rGO were simultaneously obtained. The structure and composition of the as-synthesized Bi2MoO6 and Bi2MoO6/rGO materials were characterized via FT-IR, BET, TGA, XRD, TEM, SEM and XPS analyses, and the electrochemical performance of Bi2MoO6/rGO as an anode in a lithium-ion battery was investigated. Compared with pristine Bi2MoO6, the Bi2MoO6/rGO composites have higher capacities, better cycle stability and higher rates. For a current density of 100 mA g-1, the initial discharge capacities of the Bi2MoO6/rGO-20 and pristine Bi2MoO6 were 1049.6 mAh g-1 and 528.5 mAh g-1, respectively. After 100 cycles, the capacity retention for the Bi2MoO6/rGO-20 and pristine Bi2MoO6 were respectively 80.4% and 30.7% using the 2nd cycle capacities (895.8 and 402.4 mAh g-1) as references. The enhanced electrochemical performance can be ascribed to the synergistic effect of the Bi2MoO6 and rGO sheets, which dramatically improves the conductivities of the Bi2MoO6/rGO anodes. In addition, the rGO sheets also supply electron transfer routes for the anode and suppress volume changes of Bi2MoO6 nanosheets during the charge-discharge cycles.

Keywords: Anode materials; Bismuth molybdate; Hydrothermal approach; Lithium-ion batteries; Reduced graphene oxide.