Fish eco-genotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution

Saudi J Biol Sci. 2018 Feb;25(2):393-398. doi: 10.1016/j.sjbs.2017.11.048. Epub 2017 Dec 2.

Abstract

Owing to white meat production Labeo rohita have vast economic importance, but its population has been reduced drastically in River Chenab due to pollution. Atomic absorption spectrophotometry showed a merciless toxicity level of Cd, Cu, Mn, Zn, Pb, Cr, Sn and Hg. Comet assay results indicated significant (p < .05) DNA fragmentation in Labeo rohita as 42.21 ± 2.06%, 31.26 ± 2.41% and 21.84 ± 2.21% DNA in comet tail, tail moment as 17.71 ± 1.79, 10.30 ± 1.78 and 7.81 ± 1.56, olive moment as 13.58 ± 1.306, 8.10 ± 1.04 and 5.88 ± 0.06, respectively, from three different polluted sites on the river. Micronucleus assay showed similar findings of single micronucleus induction (MN) as 50.00 ± 6.30‰, double MN 14.40 ± 2.56‰, while nuclear abnormalities (NA) were found as 150.00 ± 2.92‰. These higher frequencies of MN induction and NA were found to be the cause of reduction of 96% of the population of this fish species in an experimental area of the River Chenab. This fish species has been found near extinction through the length of the river Chenab and few specimens in rainy seasons if restored by flood, may die in sugarcane mill season. Due to sweeping extinction Labeo rohita showed the highest sensitivity for pollution and could be used as bioindicator and DNA fragmentation in this column feeder fish species as a biomarker of the pollution load in freshwater bodies.

Keywords: Biomarker; DNA damage; Labeo rohita; Pollution; Population; River Chenab.